AIGC 010-CLIP第一个文本和图像对齐的大模型!

AIGC 010-CLIP第一个文本和图像对齐的大模型!


文章目录

    • [0 论文工作](#0 论文工作)
    • [1 论文方法](#1 论文方法)
    • [2 效果](#2 效果)

0 论文工作

不客气的说CLIP和扩散模型的成功让计算式视觉领域几乎所有工作都重新做了一遍。

CLIP(对比语言-图像预训练)论文提出了一种新的对比学习方法,用于学习图像和文本之间的联合表示。该方法通过将图像和文本对匹配,并将其与不匹配的图像和文本对区分开来,训练一个能够理解图像和文本之间语义关联的模型。CLIP 的关键创新在于使用对比学习目标,通过最大化匹配对之间的相似度,同时最小化不匹配对之间的相似度,来学习图像和文本的共同语义空间。

最先进的计算机视觉系统被训练来预测一组固定的预定的对象类别。这种受限的监督形式限制了它们的通用性和可用性,因为需要额外的标记数据来指定任何其他视觉概念。直接从原始文本中学习关于图像的知识是一种很有前途的选择,它利用了更广泛的监督来源。作者演示了一个简单的预训练任务,预测哪个caption与哪个图像是一个有效的和可伸缩的方法,从头开始学习SOTA图像表示在4亿的数据集(图像、文本)。
论文链接
github

1 论文方法

CLIP 的训练过程主要包含以下步骤:

数据准备: 收集大量的图像-文本对数据,并进行清洗和预处理。

模型架构: 使用两个独立的编码器分别对图像和文本进行编码,获得图像和文本的特征表示。

对比学习: 通过对比学习目标来训练模型,该目标旨在最大化匹配图像-文本对之间的相似度,并最小化不匹配对之间的相似度。

实现:

论文展示了 CLIP 的实际实现,并证明了其在各种下游任务(例如图像检索、图像分类和文本生成)中的有效性。CLIP 使用 Transformer 网络作为编码器,并通过对比学习目标进行训练。

优点:

强大的语义对齐能力: CLIP 能够学习图像和文本之间的通用语义表示,使其能够理解图像和文本之间的细微差别。

无需人工标注: CLIP 使用对比学习,无需人工标注数据,降低了训练成本。

广泛的应用范围: CLIP 可以应用于各种图像和文本相关的任务,如图像检索、图像分类、文本生成等。

缺点:

计算资源需求大: 由于训练数据规模庞大,CLIP 的训练需要大量的计算资源。

可能存在偏差: CLIP 的训练数据可能会包含偏差,这些偏差可能会传播到模型中,影响模型的性能。

对特定领域的适应性有限: CLIP 主要是针对通用语义进行训练,因此在处理特定领域的任务时可能需要进行微调。

2 效果

这就是对比学习的威力!

相关推荐
apocalypsx10 分钟前
深度学习-Kaggle实战1(房价预测)
人工智能·深度学习
春末的南方城市14 分钟前
开放指令编辑创新突破!小米开源 Lego-Edit 登顶 SOTA:用强化学习为 MLLM 编辑开辟全新赛道!
人工智能·深度学习·机器学习·计算机视觉·aigc
37手游后端团队20 分钟前
Claude Code Review:让AI审核更懂你的代码
人工智能·后端·ai编程
源代码杀手1 小时前
深入解析 Spec Kit 工作流:基于 GitHub 的 Spec-Driven Development 实践
人工智能·github
java1234_小锋2 小时前
TensorFlow2 Python深度学习 - TensorFlow2框架入门 - 计算图和 tf.function 简介
python·深度学习·tensorflow·tensorflow2
szxinmai主板定制专家2 小时前
基于 ZYNQ ARM+FPGA+AI YOLOV4 的电网悬垂绝缘子缺陷检测系统的研究
arm开发·人工智能·嵌入式硬件·yolo·fpga开发
聚客AI2 小时前
🌈提示工程已过时?上下文工程从理论到实践的完整路线图
人工智能·llm·agent
C嘎嘎嵌入式开发2 小时前
(二) 机器学习之卷积神经网络
人工智能·机器学习·cnn
红宝村村长2 小时前
【学习笔记】从零构建大模型
深度学习
文心快码BaiduComate2 小时前
开工不累,双强护航:文心快码接入 DeepSeek-V3.2-Exp和 GLM-4.6,助你节后高效Coding
前端·人工智能·后端