AIGC 010-CLIP第一个文本和图像对齐的大模型!

AIGC 010-CLIP第一个文本和图像对齐的大模型!


文章目录

    • [0 论文工作](#0 论文工作)
    • [1 论文方法](#1 论文方法)
    • [2 效果](#2 效果)

0 论文工作

不客气的说CLIP和扩散模型的成功让计算式视觉领域几乎所有工作都重新做了一遍。

CLIP(对比语言-图像预训练)论文提出了一种新的对比学习方法,用于学习图像和文本之间的联合表示。该方法通过将图像和文本对匹配,并将其与不匹配的图像和文本对区分开来,训练一个能够理解图像和文本之间语义关联的模型。CLIP 的关键创新在于使用对比学习目标,通过最大化匹配对之间的相似度,同时最小化不匹配对之间的相似度,来学习图像和文本的共同语义空间。

最先进的计算机视觉系统被训练来预测一组固定的预定的对象类别。这种受限的监督形式限制了它们的通用性和可用性,因为需要额外的标记数据来指定任何其他视觉概念。直接从原始文本中学习关于图像的知识是一种很有前途的选择,它利用了更广泛的监督来源。作者演示了一个简单的预训练任务,预测哪个caption与哪个图像是一个有效的和可伸缩的方法,从头开始学习SOTA图像表示在4亿的数据集(图像、文本)。
论文链接
github

1 论文方法

CLIP 的训练过程主要包含以下步骤:

数据准备: 收集大量的图像-文本对数据,并进行清洗和预处理。

模型架构: 使用两个独立的编码器分别对图像和文本进行编码,获得图像和文本的特征表示。

对比学习: 通过对比学习目标来训练模型,该目标旨在最大化匹配图像-文本对之间的相似度,并最小化不匹配对之间的相似度。

实现:

论文展示了 CLIP 的实际实现,并证明了其在各种下游任务(例如图像检索、图像分类和文本生成)中的有效性。CLIP 使用 Transformer 网络作为编码器,并通过对比学习目标进行训练。

优点:

强大的语义对齐能力: CLIP 能够学习图像和文本之间的通用语义表示,使其能够理解图像和文本之间的细微差别。

无需人工标注: CLIP 使用对比学习,无需人工标注数据,降低了训练成本。

广泛的应用范围: CLIP 可以应用于各种图像和文本相关的任务,如图像检索、图像分类、文本生成等。

缺点:

计算资源需求大: 由于训练数据规模庞大,CLIP 的训练需要大量的计算资源。

可能存在偏差: CLIP 的训练数据可能会包含偏差,这些偏差可能会传播到模型中,影响模型的性能。

对特定领域的适应性有限: CLIP 主要是针对通用语义进行训练,因此在处理特定领域的任务时可能需要进行微调。

2 效果

这就是对比学习的威力!

相关推荐
XMAIPC_Robot12 分钟前
基于ARM+FPGA的光栅尺精密位移加速度测试解决方案
arm开发·人工智能·fpga开发·自动化·边缘计算
加油吧zkf22 分钟前
YOLO目标检测数据集类别:分类与应用
人工智能·计算机视觉·目标跟踪
Blossom.11844 分钟前
机器学习在智能制造业中的应用:质量检测与设备故障预测
人工智能·深度学习·神经网络·机器学习·机器人·tensorflow·sklearn
天天扭码1 小时前
AI时代,前端如何处理大模型返回的多模态数据?
前端·人工智能·面试
难受啊马飞2.01 小时前
如何判断 AI 将优先自动化哪些任务?
运维·人工智能·ai·语言模型·程序员·大模型·大模型学习
顺丰同城前端技术团队1 小时前
掌握未来:构建专属领域的大模型与私有知识库——从部署到微调的全面指南
人工智能·deepseek
许泽宇的技术分享1 小时前
用.NET9+Blazor+Semantic Kernel,打造企业级AI知识库和智能体平台——AntSK深度解读
人工智能
Georgewu1 小时前
【AI大模型入门指南】机器学习入门详解
aigc·openai
烟锁池塘柳01 小时前
【深度学习】强化学习(Reinforcement Learning, RL)主流架构解析
人工智能·深度学习·机器学习
一尘之中2 小时前
全素山药开发指南:从防痒处理到高可用食谱架构
人工智能