Codeforces Global Round 3 C. Crazy Diamond

Crazy Diamond

time limit per test: 3 second memory limit per test: 256 megabytes input: standard input output: standard output

You are given a permutation p p p of integers from 1 1 1 to n n n, where n n n is an even number.

Your goal is to sort the permutation. To do so, you can perform zero or more operations of the following type:

  • take two indices i i i and j j j such that 2 ⋅ ∣ i − j ∣ ≥ n 2 \cdot |i - j| \geq n 2⋅∣i−j∣≥n and swap p i p_i pi and p j p_j pj.

There is no need to minimize the number of operations, however you should use no more than 5 ⋅ n 5 \cdot n 5⋅n operations. One can show that it is always possible to do that.

Input

The first line contains a single integer n n n ( 2 ≤ n ≤ 3 ⋅ 1 0 5 2 \leq n \leq 3 \cdot 10^5 2≤n≤3⋅105, n n n is even) --- the length of the permutation.

The second line contains n n n distinct integers p 1 , p 2 , ... , p n p_1, p_2, \ldots, p_n p1,p2,...,pn ( 1 ≤ p i ≤ n 1 \le p_i \le n 1≤pi≤n) --- the given permutation.

Output

On the first line print m m m ( 0 ≤ m ≤ 5 ⋅ n 0 \le m \le 5 \cdot n 0≤m≤5⋅n) --- the number of swaps to perform.

Each of the following m m m lines should contain integers a i , b i a_i, b_i ai,bi ( 1 ≤ a i , b i ≤ n 1 \le a_i, b_i \le n 1≤ai,bi≤n, ∣ a i − b i ∣ ≥ n 2 |a_i - b_i| \ge \frac{n}{2} ∣ai−bi∣≥2n) --- the indices that should be swapped in the corresponding swap.

Note that there is no need to minimize the number of operations. We can show that an answer always exists.

Example

i n p u t \tt input input
2 2 1
o u t p u t \tt output output
1 1 2
i n p u t \tt input input
4 3 4 1 2
o u t p u t \tt output output
4 1 4 1 4 1 3 2 4
i n p u t \tt input input
6 2 5 3 1 4 6
o u t p u t \tt output output
3 1 5 2 5 1 4

Note

In the first example, when one swap elements on positions 1 1 1 and 2 2 2, the array becomes sorted.

In the second example, pay attention that there is no need to minimize number of swaps.

In the third example, after swapping elements on positions 1 1 1 and 5 5 5 the array becomes: [ 4 , 5 , 3 , 1 , 2 , 6 ] [4, 5, 3, 1, 2, 6] [4,5,3,1,2,6]. After swapping elements on positions 2 2 2 and 5 5 5 the array becomes [ 4 , 2 , 3 , 1 , 5 , 6 ] [4, 2, 3, 1, 5, 6] [4,2,3,1,5,6] and finally after swapping elements on positions 1 1 1 and 4 4 4 the array becomes sorted: [ 1 , 2 , 3 , 4 , 5 , 6 ] [1, 2, 3, 4, 5, 6] [1,2,3,4,5,6].

Tutorial

由题意得,设当前位置坐标为 i i i,数字 i i i 所在位置为 j j j,此时会出现以下三种情况:

  • 如果 ∣ i − j ∣ ≥ n 2 |i - j| \ge {n \over 2} ∣i−j∣≥2n,则只需要交换 i i i 位置和 j j j 位置的元素即可
  • 如果 ∣ i − j ∣ < n 2 ∪ i > n 2 |i - j| < {n \over 2} \cup i > {n \over 2} ∣i−j∣<2n∪i>2n,此时可以让 1 1 1 位置承担了中间转运的作用,可以将 1 1 1 位置上的元素和 i i i 位置上的元素交换,然后将 1 1 1 位置上的元素和 j j j 位置元素上的位置交换,最后将 1 1 1 位置上的元素和 i i i 位置上的元素再交换一次即可
  • 如果 ∣ i − j ∣ < n 2 ∪ j ≤ n 2 |i - j| < {n \over 2} \cup j \le {n \over 2} ∣i−j∣<2n∪j≤2n,此时可以让 n n n 位置承担了中间转运的作用,可以将 n n n 位置上的元素和 i i i 位置上的元素交换,然后将 n n n 位置上的元素和 j j j 位置元素上的位置交换,最后将 n n n 位置上的元素和 i i i 位置上的元素再交换一次即可
  • 如果 ∣ i − j ∣ < n 2 ∪ i ≤ n 2 ∪ j ≥ n 2 |i - j| < {n \over 2} \cup i \le {n \over 2} \cup j \ge {n \over 2} ∣i−j∣<2n∪i≤2n∪j≥2n,此时可以让 1 1 1 位置和 n n n 位置承担了中间转运的作用,可以先将 i i i 位置上的元素和 n n n 位置上的元素交换,然后将 1 1 1 位置上的元素和 n n n 位置元素上的位置交换,然后将 1 1 1 位置上的元素和 j j j 位置元素上的位置交换,然后将 1 1 1 位置上的元素和 n n n 位置元素上的位置交换,最后将 i i i 位置上的元素和 n n n 位置上的元素再交换一次即可

举几个例子不难得出,起到中间转运作用的 1 1 1 位置和 n n n 位置上的元素均未发生变化,而 i i i 位置和 j j j 位置上的元素调换了位置,题目中提到操作次数不超过 5 ⋅ n 5 \cdot n 5⋅n 次,此方法最多操作 5 ⋅ n 2 + 3 ⋅ n 2 = 4 n 5 \cdot \frac{n}{2} + 3 \cdot \frac{n}{2} = 4 n 5⋅2n+3⋅2n=4n 次(因为当 i ≥ n 2 + 1 i \ge {n \over 2} + 1 i≥2n+1 时必定只需要三次交换,所以第四种情况最多发生 n 2 n \over 2 2n 次)

此解法时间复杂度为 O ( n ) \mathcal O(n) O(n)

Solution

cpp 复制代码
#include <bits/stdc++.h>
using namespace std;

#define endl '\n'
#define int long long
#define PII pair<int, int>

signed main() {
    int n;
    cin >> n;
    vector<int> p(n + 1), idx(n + 1);
    vector<PII> ans;
    for (int i = 1; i <= n; ++i) {
        cin >> p[i];
        idx[p[i]] = i;
    }
    
    function<void(int, int)> SWAP = [&](int x, int y) {
        ans.emplace_back(x, y);
        swap(idx[p[x]], idx[p[y]]);
        swap(p[x], p[y]);
    };
    
    for (int i = 1; i <= n; ++i) {
        if (p[i] != i) {
            int j = idx[i];
            if (abs(j - i) >= n / 2) {
                SWAP(i, j);
            } else {
                if (i > n / 2) {
                    SWAP(1, i); SWAP(1, j); SWAP(1, i);
                } else if (n - j >= n / 2) {
                    SWAP(i, n); SWAP(j, n); SWAP(i, n);
                } else {
                    SWAP(i, n); SWAP(1, n); SWAP(1, j); SWAP(1, n); SWAP(i, n);
                }
            }
        }
    }
    cout << ans.size() << endl;
    for (auto [x, y] : ans) {
        cout << x << " " << y << endl;
    }
    return 0;
}
相关推荐
菌菌的快乐生活几秒前
理解支持向量机
算法·机器学习·支持向量机
大山同学5 分钟前
第三章线性判别函数(二)
线性代数·算法·机器学习
axxy200024 分钟前
leetcode之hot100---240搜索二维矩阵II(C++)
数据结构·算法
黑客Ash35 分钟前
安全算法基础(一)
算法·安全
yuanbenshidiaos1 小时前
c++---------数据类型
java·jvm·c++
十年一梦实验室1 小时前
【C++】sophus : sim_details.hpp 实现了矩阵函数 W、其导数,以及其逆 (十七)
开发语言·c++·线性代数·矩阵
AI莫大猫1 小时前
(6)YOLOv4算法基本原理以及和YOLOv3 的差异
算法·yolo
taoyong0011 小时前
代码随想录算法训练营第十一天-239.滑动窗口最大值
c++·算法
这是我582 小时前
C++打小怪游戏
c++·其他·游戏·visual studio·小怪·大型·怪物
Uu_05kkq2 小时前
【C语言1】C语言常见概念(总结复习篇)——库函数、ASCII码、转义字符
c语言·数据结构·算法