【MATLAB】基于EMD-PCA-LSTM的回归预测模型

有意向获取代码,请转文末观看代码获取方式~

1 基本定义

基于EMD-PCA-LSTM的回归预测模型是一种结合了经验模态分解(Empirical Mode Decomposition, EMD)、主成分分析(Principal Component Analysis, PCA)和长短期记忆网络(Long Short-Term Memory, LSTM)的复杂回归序列预测方法。下面分别介绍这三个组成部分的基本原理以及它们是如何结合在一起的。

  1. 经验模态分解(EMD): EMD是一种自适应的时间序列分析方法,它能够将非线性和非平稳的时间序列分解为一系列固有模态函数(Intrinsic Mode Functions, IMFs)和一个残余项。每个IMF都是一个局部的振荡模式,并且满足两个条件:在整个数据段中,局部极大值点和局部极小值点的数目相等,且局部极大值点和局部极小值点的局部平均值是零。通过EMD分解,可以提取出时间序列中的不同频率成分,为后续分析提供基础。

  2. 主成分分析(PCA): PCA是一种降维技术,用于在保留数据集中大部分变异性的同时减少数据的维度。它通过正交变换将可能相关的变量转换为一组线性不相关的变量,这些不相关变量称为主成分。PCA可以提取数据中最重要的特征,减少模型的复杂度,并且有助于去除噪声。

  3. 长短期记忆网络(LSTM): LSTM是一种特殊的循环神经网络(RNN),它能够学习长期依赖关系。LSTM通过引入三个门(输入门、遗忘门、输出门)来控制信息的流动,从而避免传统RNN中的梯度消失或爆炸问题。LSTM非常适合处理序列数据,能够捕捉时间序列中的长期依赖关系。

结合原理

  • 首先,使用EMD对原始时间序列数据进行分解,得到多个IMFs和一个残余项。

  • 然后,对这些IMFs和残余项分别应用PCA,以减少每个序列的维度并提取主要特征。

  • 最后,将PCA处理后的序列作为输入,使用LSTM网络进行回归预测。

这种模型的优势在于:

  • EMD能够处理非线性和非平稳数据,提取出时间序列中的不同频率成分。

  • PCA可以进一步降低每个IMF的维度,去除噪声,提取关键特征。

  • LSTM能够学习序列数据中的长期依赖关系,进行有效的预测。

通过这三个步骤的结合,基于EMD-PCA-LSTM的回归预测模型能够处理复杂的时间序列数据,并提供准确的预测结果。

2 出图效果

附出图效果如下:

emdtest1.m运行程序后出图如下:

kpcaTest2.m运行程序后出图如下:

EMD_KPCA_LSTM3.m运行程序后出图如下:

附视频教程操作:

【MATLAB】基于EMD-PCA-LSTM的回归预测模型

3 代码获取

见附件~

相关推荐
沐欣工作室_lvyiyi1 小时前
基于Matlab的简易振动信号分析系统(论文+仿真)
开发语言·matlab·毕业设计·振动信号分析
Evand J7 小时前
【自适应粒子滤波MATLAB例程】Sage Husa自适应粒子滤波,用于克服初始Q和R不准确的问题,一维非线性滤波。附下载链接
开发语言·matlab·卡尔曼滤波·自适应滤波·非线性
qq_401700417 小时前
matlab学习
学习·算法·matlab
lingchen190612 小时前
MATLAB图形绘制基础(一)二维图形
开发语言·算法·matlab
Evand J18 小时前
【MATLAB例程】二维环境定位,GDOP和CRLB的计算,锚点数=4的情况(附代码下载链接)
开发语言·matlab·定位·toa·crlb·gdop
沐欣工作室_lvyiyi18 小时前
用于电动汽车的永磁同步电机调速系统建模与仿真(论文+)
matlab·仿真·永磁同步电机·无传感器
机器学习之心18 小时前
MATLAB基于灰靶决策模型的高校信息化设备供应商选择研究
matlab·灰靶决策模型
电气小僧1 天前
LCL滤波器传递函数及波特图绘制
matlab·硬件工程·硬件·电力电子·电源·开关电源
Evand J1 天前
【MATLAB例程】自适应渐消卡尔曼滤波,背景为二维雷达目标跟踪,基于扩展卡尔曼(EKF)|附完整代码的下载链接
开发语言·matlab·目标跟踪·1024程序员节
lzptouch2 天前
逻辑斯蒂回归(Logistic Regression)算法
算法·数据挖掘·回归