【MATLAB】基于EMD-PCA-LSTM的回归预测模型

有意向获取代码,请转文末观看代码获取方式~

1 基本定义

基于EMD-PCA-LSTM的回归预测模型是一种结合了经验模态分解(Empirical Mode Decomposition, EMD)、主成分分析(Principal Component Analysis, PCA)和长短期记忆网络(Long Short-Term Memory, LSTM)的复杂回归序列预测方法。下面分别介绍这三个组成部分的基本原理以及它们是如何结合在一起的。

  1. 经验模态分解(EMD): EMD是一种自适应的时间序列分析方法,它能够将非线性和非平稳的时间序列分解为一系列固有模态函数(Intrinsic Mode Functions, IMFs)和一个残余项。每个IMF都是一个局部的振荡模式,并且满足两个条件:在整个数据段中,局部极大值点和局部极小值点的数目相等,且局部极大值点和局部极小值点的局部平均值是零。通过EMD分解,可以提取出时间序列中的不同频率成分,为后续分析提供基础。

  2. 主成分分析(PCA): PCA是一种降维技术,用于在保留数据集中大部分变异性的同时减少数据的维度。它通过正交变换将可能相关的变量转换为一组线性不相关的变量,这些不相关变量称为主成分。PCA可以提取数据中最重要的特征,减少模型的复杂度,并且有助于去除噪声。

  3. 长短期记忆网络(LSTM): LSTM是一种特殊的循环神经网络(RNN),它能够学习长期依赖关系。LSTM通过引入三个门(输入门、遗忘门、输出门)来控制信息的流动,从而避免传统RNN中的梯度消失或爆炸问题。LSTM非常适合处理序列数据,能够捕捉时间序列中的长期依赖关系。

结合原理

  • 首先,使用EMD对原始时间序列数据进行分解,得到多个IMFs和一个残余项。

  • 然后,对这些IMFs和残余项分别应用PCA,以减少每个序列的维度并提取主要特征。

  • 最后,将PCA处理后的序列作为输入,使用LSTM网络进行回归预测。

这种模型的优势在于:

  • EMD能够处理非线性和非平稳数据,提取出时间序列中的不同频率成分。

  • PCA可以进一步降低每个IMF的维度,去除噪声,提取关键特征。

  • LSTM能够学习序列数据中的长期依赖关系,进行有效的预测。

通过这三个步骤的结合,基于EMD-PCA-LSTM的回归预测模型能够处理复杂的时间序列数据,并提供准确的预测结果。

2 出图效果

附出图效果如下:

emdtest1.m运行程序后出图如下:

kpcaTest2.m运行程序后出图如下:

EMD_KPCA_LSTM3.m运行程序后出图如下:

附视频教程操作:

【MATLAB】基于EMD-PCA-LSTM的回归预测模型

3 代码获取

见附件~

相关推荐
ghie90904 小时前
基于MATLAB GUI的伏安法测电阻实现方案
开发语言·matlab·电阻
leo__5206 小时前
基于菲涅耳衍射积分的空心高斯光束传输数值模拟(MATLAB实现)
开发语言·matlab
byzh_rc7 小时前
[认知计算] 专栏总结
线性代数·算法·matlab·信号处理
listhi5207 小时前
对LeNet-5的matlab实现,识别MINST手写数字集
开发语言·matlab
FL171713148 小时前
MATLAB的Sensitivity Analyzer
开发语言·matlab
zhangfeng11338 小时前
数据分析 医学分析中线性回归、Cox回归、Logistic回归的定义和区别,原理和公式,适用场景
数据分析·回归·线性回归
rit843249913 小时前
基于高斯混合模型(GMM)的语音识别系统:MATLAB实现与核心原理
人工智能·matlab·语音识别
ytttr87314 小时前
基于人工蜂群算法(ABC)的MATLAB数值计算求解框架
开发语言·算法·matlab
cici1587414 小时前
基于正交匹配追踪(OMP)算法的信号稀疏分解MATLAB实现
数据库·算法·matlab
Evand J14 小时前
【MATLAB代码介绍】【空地协同】UAV辅助的UGV协同定位,无人机辅助地面无人车定位,带滤波,MATLAB
开发语言·matlab·无人机·协同·路径·多机器人