06.逻辑回归

文章目录

Generate Model

假设样本符合高斯分布

即找 μ \mu μ和 σ \sigma σ

优化

共用 Σ \Sigma Σ减少参数,降低过拟合

也称linear model

边界为线性证明

损失函数



比较


逻辑回归不能用均方误差


Generative v.s. Discriminative


Multi-class Classification

逻辑回归的限制

做不了,因为边界是一条直线

可以通过线性变换到另一个线性空间中,重新定义特征向量

自己找线性变换

相关推荐
WWZZ20254 小时前
快速上手大模型:机器学习3(多元线性回归及梯度、向量化、正规方程)
人工智能·算法·机器学习·机器人·slam·具身感知
晓枫-迷麟7 小时前
【文献阅读】当代MOF与机器学习
人工智能·机器学习
sensen_kiss7 小时前
INT301 Bio-computation 生物计算(神经网络)Pt.3 梯度下降与Sigmoid激活函数
人工智能·神经网络·机器学习
Shilong Wang7 小时前
MLE, MAP, Full Bayes
人工智能·算法·机器学习
Theodore_10227 小时前
机器学习(6)特征工程与多项式回归
深度学习·算法·机器学习·数据分析·多项式回归
Blossom.1188 小时前
把AI“刻”进玻璃:基于飞秒激光量子缺陷的随机数生成器与边缘安全实战
人工智能·python·单片机·深度学习·神经网络·安全·机器学习
Aurora-silas9 小时前
LLM微调尝试——MAC版
人工智能·pytorch·深度学习·macos·机器学习·语言模型·自然语言处理
安於宿命12 小时前
【machine learning】COVID-19 daily cases prediction
人工智能·机器学习
razelan13 小时前
第一例:石头剪刀布的机器学习(xedu,示例15)
人工智能·机器学习
nju_spy13 小时前
牛客网 AI题(一)机器学习 + 深度学习
人工智能·深度学习·机器学习·lstm·笔试·损失函数·自注意力机制