06.逻辑回归

文章目录

Generate Model

假设样本符合高斯分布

即找 μ \mu μ和 σ \sigma σ

优化

共用 Σ \Sigma Σ减少参数,降低过拟合

也称linear model

边界为线性证明

损失函数



比较


逻辑回归不能用均方误差


Generative v.s. Discriminative


Multi-class Classification

逻辑回归的限制

做不了,因为边界是一条直线

可以通过线性变换到另一个线性空间中,重新定义特征向量

自己找线性变换

相关推荐
生信大表哥2 小时前
贝叶斯共识聚类(BCC)
机器学习·数据挖掘·聚类
Cathy Bryant6 小时前
信息论(五):联合熵与条件熵
人工智能·笔记·机器学习·数学建模·概率论
aitoolhub13 小时前
重塑机器人未来:空间智能驱动产业智能化升级
大数据·人工智能·深度学习·机器学习·机器人·aigc
淬炼之火13 小时前
阅读:基于深度学习的红外可见光图像融合综述
图像处理·深度学习·机器学习·计算机视觉·特征融合·红外图像识别
极客BIM工作室13 小时前
思维链(CoT)的本质:无需架构调整,仅靠提示工程激活大模型推理能力
人工智能·机器学习·架构
三条猫14 小时前
AI 大模型如何给 CAD 3D 模型“建立语义”?
人工智能·机器学习·3d·ai·大模型·cad
pen-ai1 天前
【高级机器学习】 10. 领域适应与迁移学习
人工智能·机器学习·迁移学习
CV实验室1 天前
AAAI 2026 Oral 之江实验室等提出MoEGCL:在6大基准数据集上刷新SOTA,聚类准确率最高提升超8%!
人工智能·机器学习·计算机视觉·数据挖掘·论文·聚类
机器觉醒时代1 天前
“干活”机器人“教练”登场:宇树机器人推出首款轮式机器人G1-D
人工智能·机器学习·机器人·人形机器人
m0_635129261 天前
身智能-一文详解视觉-语言-动作(VLA)大模型(3)
人工智能·机器学习