pytorch 中bincount()函数详解

torch.bincount 函数通常用于统计离散值的出现次数,如图中节点的批次信息、类别标签等。它可以帮助我们快速计算每个值的计数,而无需手动编写循环或其他复杂的逻辑。

例子:

复制代码
>>> import torch
>>> input = torch.tensor([1, 2, 2, 3, 3, 3, 10])
>>> counts = torch.bincount(input)
>>> print(counts)
tensor([0, 1, 2, 3, 0, 0, 0, 0, 0, 0, 1])

tensor([0, 1, 2, 3, 0, 0, 0, 0, 0, 0, 1])。计算统计的频次,即,0对应的标签0个,以此类推,1:1个,2:2个,3:3个,4:0个,5:0个,6:0个,7:0个,8:0个,9:0个,10:1个。

相关推荐
好奇龙猫1 分钟前
【AI学习-comfyUI学习-第十四节-joycaption3课程工作流工作流-各个部分学习】
人工智能·学习
子夜江寒3 分钟前
Python 学习-Day9-pandas数据导入导出操作
python·学习·pandas
点云SLAM6 分钟前
Decisive 英文单词学习
人工智能·学习·英文单词学习·雅思备考·decisive·起决定性的·果断的
码农很忙7 分钟前
让复杂AI应用构建像搭积木:Spring AI Alibaba Graph深度指南与源码拆解
开发语言·人工智能·python
余俊晖19 分钟前
多模态视觉语言模型增强原生分辨率继续预训练方法-COMP架构及训练方法
人工智能·语言模型·自然语言处理
运维@小兵31 分钟前
使用Spring-ai实现同步响应和流式响应
java·人工智能·spring-ai·ai流式响应
玩具猴_wjh31 分钟前
线性规划核心知识点
人工智能·机器学习
科学最TOP37 分钟前
IJCAI25|如何平衡文本与时序信息的融合适配?
人工智能·深度学习·神经网络·机器学习·时间序列
黑客思维者42 分钟前
突破 Python 多线程限制:GIL 问题的 4 种实战解法
服务器·数据库·python·gil