pytorch 中bincount()函数详解

torch.bincount 函数通常用于统计离散值的出现次数,如图中节点的批次信息、类别标签等。它可以帮助我们快速计算每个值的计数,而无需手动编写循环或其他复杂的逻辑。

例子:

复制代码
>>> import torch
>>> input = torch.tensor([1, 2, 2, 3, 3, 3, 10])
>>> counts = torch.bincount(input)
>>> print(counts)
tensor([0, 1, 2, 3, 0, 0, 0, 0, 0, 0, 1])

tensor([0, 1, 2, 3, 0, 0, 0, 0, 0, 0, 1])。计算统计的频次,即,0对应的标签0个,以此类推,1:1个,2:2个,3:3个,4:0个,5:0个,6:0个,7:0个,8:0个,9:0个,10:1个。

相关推荐
上进小菜猪4 小时前
基于 YOLOv8 的智能车牌定位检测系统设计与实现—从模型训练到 PyQt 可视化落地的完整实战方案
人工智能
AI浩5 小时前
UNIV:红外与可见光模态的统一基础模型
人工智能·深度学习
GitCode官方5 小时前
SGLang AI 金融 π 对(杭州站)回顾:大模型推理的工程实践全景
人工智能·金融·sglang
醒过来摸鱼5 小时前
Java classloader
java·开发语言·python
superman超哥5 小时前
仓颉语言中元组的使用:深度剖析与工程实践
c语言·开发语言·c++·python·仓颉
小鸡吃米…5 小时前
Python - 继承
开发语言·python
木头左5 小时前
LSTM模型入参有效性验证基于量化交易策略回测的方法学实践
人工智能·rnn·lstm
祁思妙想5 小时前
Python中的FastAPI框架的设计特点和性能优势
开发语言·python·fastapi
找方案5 小时前
我的 all-in-rag 学习笔记:文本分块 ——RAG 系统的 “信息切菜术“
人工智能·笔记·all-in-rag
Dingdangcat865 小时前
反恐精英角色识别与定位-基于改进的boxinst_r101_fpn_ms-90k_coco模型实现
python