pytorch 中bincount()函数详解

torch.bincount 函数通常用于统计离散值的出现次数,如图中节点的批次信息、类别标签等。它可以帮助我们快速计算每个值的计数,而无需手动编写循环或其他复杂的逻辑。

例子:

复制代码
>>> import torch
>>> input = torch.tensor([1, 2, 2, 3, 3, 3, 10])
>>> counts = torch.bincount(input)
>>> print(counts)
tensor([0, 1, 2, 3, 0, 0, 0, 0, 0, 0, 1])

tensor([0, 1, 2, 3, 0, 0, 0, 0, 0, 0, 1])。计算统计的频次,即,0对应的标签0个,以此类推,1:1个,2:2个,3:3个,4:0个,5:0个,6:0个,7:0个,8:0个,9:0个,10:1个。

相关推荐
ModestCoder_4 分钟前
ROS Bag与导航数据集技术指南
开发语言·人工智能·自然语言处理·机器人·具身智能
海边夕阳200621 分钟前
【每天一个AI小知识】:什么是循环神经网络?
人工智能·经验分享·rnn·深度学习·神经网络·机器学习
2501_9181269128 分钟前
如何用ai做开发
人工智能
f***a34637 分钟前
开源模型应用落地-工具使用篇-Spring AI-高阶用法(九)
人工智能·spring·开源
用户51914958484540 分钟前
BBDown:高效便捷的哔哩哔哩视频下载工具
人工智能·aigc
CV实验室42 分钟前
CV论文速递:覆盖视频生成与理解、3D视觉与运动迁移、多模态与跨模态智能、专用场景视觉技术等方向 (11.17-11.21)
人工智能·计算机视觉·3d·论文·音视频·视频生成
●VON43 分钟前
AI不能做什么?澄清常见误解
人工智能
数据堂官方账号1 小时前
行业洞见 | AI鉴伪:数据驱动的数字安全变革
人工智能·安全
能鈺CMS1 小时前
内容付费系统全面解析:构建知识变现体系的最强工具(2025 SEO 深度专题)
大数据·人工智能·html
Salt_07281 小时前
DAY 19 数组的常见操作和形状
人工智能·python·机器学习