yolov10 瑞芯微RKNN、地平线Horizon芯片部署、TensorRT部署,部署工程难度小、模型推理速度快

特别说明:参考官方开源的yolov10代码、瑞芯微官方文档、地平线的官方文档,如有侵权告知删,谢谢。

模型和完整仿真测试代码,放在github上参考链接 模型和代码

yolov8、v9还没玩热乎,这不yolov10又来了,那么部署也又来了。

1 模型和训练

老规矩,训练代码参考官方开源的yolov10代码。

2 导出 yolov10 onnx

导出onnx增加以下几行代码:

python 复制代码
        # 导出onnx增加
        y = []
        for i in range(self.nl):
            t1 = self.one2one_cv2[i](x[i])
            t2 = self.one2one_cv3[i](x[i])
            y.append(t1)
            y.append(t2)
        return y

增加保存onnx代码:

python 复制代码
        print("===========  onnx =========== ")
        import torch
        self.model = self.model.fuse()
        dummy_input = torch.randn(1, 3, 640, 640)
        input_names = ["data"]
        output_names = ["reg1", "cls1", "reg2", "cls2", "reg3", "cls3"]
        torch.onnx.export(self.model, dummy_input, "./weights/yolov10_zq.onnx", verbose=False, input_names=input_names, output_names=output_names, opset_version=11)
        print("======================== convert onnx Finished! .... ")

修改完以上两个地方,运行推理脚本(运行会报错,但不影响onnx文件的生成)。

python 复制代码
from ultralytics import YOLOv10

# 推理
model = YOLOv10(r'./weigths/yolov10n.pt')
results = model(task='detect', mode='predict', source='./test.jpg', line_width=3, show=True, save=True, device='cpu')

增加这一行后,对其中C2fCIB模块进行重参数化(这也是文章中一个点)


重参数化前后模型的变化

3 yolov10 onnx 测试效果

pytorch效果

onnx效果

4 时耗

模型输入640x640,检测类别80类

tensorRT 时耗(显卡 Tesla V100、cuda_11.0)

rk3588时耗

本示例用的是yolov10n,模型计算量6.7G,看到这个时耗觉得可能是有操作切换到CPU上进行计算的,查了rknn转换模型日志确实是有操作切换到CPU上进行的,对应的是模型中 PSA 模块计算 Attention 这部分操作。

5 rknn 板端C++部署

C++完整部署代码和模型示例参考

相关推荐
阿坤带你走近大数据14 分钟前
Python基础知识-数据结构篇
开发语言·数据结构·python
小智RE0-走在路上18 分钟前
Python学习笔记(7)--集合,字典,数据容器总结
笔记·python·学习
沃斯堡&蓝鸟19 分钟前
DAY 29 异常处理
python
Direction_Wind22 分钟前
抓包的使用与讲解
python
职业码农NO.123 分钟前
智能体推理范式: Plan-and-Execute(规划与执行)
人工智能·python·数据分析·系统架构·知识图谱·agent·集成学习
爱笑的眼睛111 小时前
超越`cross_val_score`:深入剖析Scikit-learn交叉验证API的设计哲学与高阶实践
java·人工智能·python·ai
智驱力人工智能1 小时前
从人海战术到智能巡逻 城市街道违规占道AI识别系统的实践与思考 占道经营检测系统价格 占道经营AI预警系统
人工智能·安全·yolo·目标检测·无人机·边缘计算
Ven%2 小时前
【AI大模型算法工程师面试题解析与技术思考】
人工智能·python·算法
天勤量化大唯粉2 小时前
枢轴点反转策略在铜期货中的量化应用指南(附天勤量化代码)
ide·python·算法·机器学习·github·开源软件·程序员创富
Swizard2 小时前
拒绝“狗熊掰棒子”!用 EWC (Elastic Weight Consolidation) 彻底终结 AI 的灾难性遗忘
python·算法·ai·训练