数据来源
https://challenge.isic-archive.com/data/#2019
数据划分
写了个脚本划分
python
for line in open('ISIC/labels.csv').readlines()[1:]:
split_line = line.split(',')
img_file = split_line[0]
benign_malign = split_line[1]
# 0.8 for train, 0.1 for test, 0.1 for validation
random_num = random.random()
if random_num < 0.8:
location = train
train_examples += 1
elif random_num < 0.9:
location = validation
validation_examples += 1
else:
location = test
test_examples += 1
if int(float(benign_malign)) == 0:
shutil.copy(
'ISIC/images/' + img_file + '.jpg',
location + 'benign/' + img_file + '.jpg'
)
elif int(float(benign_malign)) == 1:
shutil.copy(
'ISIC/images/' + img_file + '.jpg',
location + 'malignant/' + img_file + '.jpg'
)
print(f'Number of training examples {train_examples}')
print(f'Number of test examples {test_examples}')
print(f'Number of validation examples {validation_examples}')
数据生成模块
python
train_datagen = ImageDataGenerator(
rescale=1.0 / 255,
rotation_range=15,
zoom_range=(0.95, 0.95),
horizontal_flip=True,
vertical_flip=True,
data_format='channels_last',
dtype=tf.float32,
)
train_gen = train_datagen.flow_from_directory(
'data/train/',
target_size=(img_height, img_width),
batch_size=batch_size,
color_mode='rgb',
class_mode='binary',
shuffle=True,
seed=123,
)
模型加载和运行
由于数据量较大,本次使用NasNet, 来源于nasnet | Kaggle
python
# NasNet
model = keras.Sequential([
hub.KerasLayer(r'C:\\Users\\32573\\Desktop\\tools\py\\cancer_classification_project\\saved_model',
trainable=True),
layers.Dense(1, activation='sigmoid'),
])
python
model.compile(
optimizer=keras.optimizers.Adam(3e-4),
loss=[keras.losses.BinaryCrossentropy(from_logits=False)],
metrics=['accuracy']
)
model.fit(
train_gen,
epochs=1,
steps_per_epoch=train_examples // batch_size,
validation_data=validation_gen,
validation_steps=validation_examples // batch_size,
)
运行结果
模型其他评估指标
python
METRICS = [
keras.metrics.BinaryAccuracy(name='accuracy'),
keras.metrics.Precision(name='precision'),
keras.metrics.Recall(name='Recall'),
keras.metrics.AUC(name='AUC'),
]
绘制roc图
python
def plot_roc(label, data):
predictions = model.predict(data)
fp, tp, _ = roc_curve(label, predictions)
plt.plot(100*fp, 100*tp)
plt.xlabel('False Positives [%]')
plt.ylabel('True Positives [%]')
plt.show()
test_labels = np.array([])
num_batches = 0
for _, y in test_gen:
test_labels = np.append(test_labels, y)
num_batches = 1
if num_batches == math.ceil(test_examples / batch_size):
break
plot_roc(test_labels, test_gen)