往期精彩内容:
Python-凯斯西储大学(CWRU)轴承数据解读与分类处理
Python轴承故障诊断 (13)基于故障信号特征提取的超强机器学习识别模型-CSDN博客
Python轴承故障诊断 (14)高创新故障识别模型-CSDN博客
Python轴承故障诊断 (15)基于CNN-Transformer的一维故障信号识别模型-CSDN博客
轴承故障全家桶更新 | 基于时频图像的分类算法-CSDN博客
Python轴承故障诊断 (16)高创新故障识别模型(二)-CSDN博客
Python轴承故障诊断 (17)基于TCN-CNN并行的一维故障信号识别模型_pytorch使用tcn网络进行故障诊断 csdn-CSDN博客
独家原创 | SCI 1区 高创新轴承故障诊断模型!-CSDN博客
Python轴承故障诊断 (18)基于CNN-TCN-Attention的创新诊断模型-CSDN博客
Python轴承故障诊断 (20)高创新故障识别模型(三)-CSDN博客
注意:本模型 继续加入 轴承故障诊断---创新模型全家桶 中 ,之前购买的同学请及时更新下载!
环境:python 3.9 pytorch 1.8 以上
分类精度:训练集、验证集、测试集均为98%
全网最低价,创新 网络分类效果显著,模型能够充分提取轴承故障信号的空间和时序特征和频域特征,收敛速度快,性能优越, 精度高。 创新度也有!!! 高性价比、高质量代码,大家可以了解一下:(所有全家桶模型会不断加入新的模型进行更新!后续会逐渐提高价格,越早购买性价比越高!!!)
基于VMD-CNN-BiTCN的轴承故障诊断创新模型:
1.创新点:
利用VMD将原始信号分解为多个模态分量,来提取信号的频域特征和时域特征;CNN 可以用于提取信号的局部空间特征并通过CNN卷积池化层降低信号序列长度,增加数据维度;BiTCN 是一种双向时序卷积网络,可以有效地捕获信号的时序信息。双向结构有助于模型捕获信号的动态特征;
- 原理流程:
首先,使用 VMD 对原始轴承信号进行分解,得到多个模态分量;每个模态分量作为输入,经过 CNN 进行特征提取和抽象;CNN 提取的特征再经过 BiTCN 进行时序建模和特征融合;最终,利用融合后的特征进行轴承故障的诊断和分类;通过结合两种模型,创新模型可以在轴承故障诊断任务中取得更好的性能和效果,提高故障诊断的准确率和效率。
前言
本文基于凯斯西储大学(CWRU)轴承数据,先经过数据预处理进行数据集的制作和加载,最后通过Pytorch实现VMD-CNN-BiTCN模型对故障数据的分类。凯斯西储大学轴承数据的详细介绍可以参考下文:
Python-凯斯西储大学(CWRU)轴承数据解读与分类处理_cwru数据集-CSDN博客
1 轴承数据加载与预处理
1.1 导入数据
参考之前的文章,进行故障10分类的预处理,凯斯西储大学轴承数据10分类数据集:
train_set、val_set、test_set 均为按照7:2:1划分训练集、验证集、测试集,最后保存数据
上图是数据的读取形式以及预处理思路
1.2 故障VMD分解可视化
第一步, 模态选取
根据不同K值条件下, 观察中心频率,选定K值;从K=4开始出现中心频率相近的模态,出现过分解,故模态数 K 选为4。
第二步,故障VMD分解可视化
1.3 故障数据的VMD分解预处理
2 基于Pytorch的VMD-CNN-BiTCN创新诊断模型
2.1 定义VMD-CNN-BiTCN分类网络模型
2.2 设置参数,训练模型
100个epoch,准确率98%,VMD-CNN-BiTCN网络分类效果显著,CNN-BiTCN模型能够充分提取轴承故障信号的多尺度特征,收敛速度快,性能特别优越,效果明显。
注意调整参数:
-
可以适当增加CNN层数和每层维度数,微调学习率;
-
微调BiTCN层数和每层通道数个数,增加更多的 epoch (注意防止过拟合)
-
可以改变一维信号堆叠的形状(设置合适的长度和维度)
2.3 模型评估
准确率、精确率、召回率、F1 Score
故障十分类混淆矩阵:
代码、数据如下:
对数据集和代码感兴趣的,可以关注最后一行
python
# 加载数据
import torch
from joblib import dump, load
import torch.utils.data as Data
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
# 参数与配置
torch.manual_seed(100) # 设置随机种子,以使实验结果具有可重复性
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
#代码和数据集:https://mbd.pub/o/bread/ZpWWlZpy