百度ERNIE系列预训练语言模型浅析(2)-ERNIE2.0

Ernie 2.0: A Continual Pre-Training Framework for Language Understanding

Sun Y, Wang S, Li Y, et al. Ernie 2.0: A continual pre-training framework for language understanding[C]//Proceedings of the AAAI * Conference on Artificial Intelligence. 2020, 34(05): 8968-8975.

关键词:Continual Multi-task Learning

概括:加入更多的预训练任务,为了有效的训练采用了连续训练的方法。

以前的模型只能学到简单的共现信息,其他有价值的信息,比如lexical\syntactic\semantic information都没有被提取出来。

因此本文Continual Multi-task Learning、不同层次的预训练任务能够提取lexical\syntactic\semantic information。

1、Continual Multi-task Learning

连续的多任务学习能记住之前学习到的信息。

上游的预训练任务和下游特定任务的Fine-tuning的闭环。

2、Pre-training Tasks

三个层次的预训练任务:

(1)Word-aware task: capture the lexical information

(2)Structure-aware task: capture the syntactic information

(3)Semantic-aware task: semantic information

2.1、Word-aware

  • Knowledge Masking:同ERNIE 1.0的实体/短语 masking
  • Capitalization Prediction:token大小写预测的任务
  • Token-Document Relation Prediction:预测句子中的词是否出现在了segment原始文档中,约等于预测token是否为关键词

2.2、Structure-aware

  • Sentence Reordering(语序关系):打乱k个句子,预测原始顺序(给每个句子做k分类)
  • Sentence Distance(语义距离):3分类任务,预测两个句子是相连、出现在同一个文档还是在不同文档

2.3、Semantic-aware

  • Discourse Relation:判断句子的语义关系,例如logical relationship (is a, has a, contract)
  • IR Relevance Task:
相关推荐
用户51914958484529 分钟前
Go语言AI智能体开发套件(ADK) - 构建复杂AI代理的开源框架
人工智能·aigc
海底的星星fly32 分钟前
【Prompt学习技能树地图】检索增强生成(RAG)核心技术剖析与实践指南
人工智能·语言模型·prompt
AI研一研33 分钟前
如何快速学习知识、查找要点、把知识读“薄”、读“精”?
人工智能·学习
北京耐用通信37 分钟前
不只是延长,是“重生”:耐达讯自动化Profibus总线光端机如何让老旧设备数据“开口说话”?
人工智能·物联网·网络协议·自动化·信息与通信
RWKV元始智能44 分钟前
体验RWKV-7训练全过程,只需400行代码训练3分钟
人工智能·算法·机器学习
qinyia1 小时前
Wisdom SSH:AI助手可用的运维工具详解,帮助理解提升人机合作效率
运维·服务器·人工智能·ssh
却道天凉_好个秋1 小时前
OpenCV(二十八):双边滤波
人工智能·opencv·计算机视觉
wangchen01122 小时前
基于视频识别的大模型项目实战心得
语言模型·音视频
IT_陈寒2 小时前
JavaScript性能优化:10个V8引擎隐藏技巧让你的代码快30%
前端·人工智能·后端