百度ERNIE系列预训练语言模型浅析(2)-ERNIE2.0

Ernie 2.0: A Continual Pre-Training Framework for Language Understanding

Sun Y, Wang S, Li Y, et al. Ernie 2.0: A continual pre-training framework for language understanding[C]//Proceedings of the AAAI * Conference on Artificial Intelligence. 2020, 34(05): 8968-8975.

关键词:Continual Multi-task Learning

概括:加入更多的预训练任务,为了有效的训练采用了连续训练的方法。

以前的模型只能学到简单的共现信息,其他有价值的信息,比如lexical\syntactic\semantic information都没有被提取出来。

因此本文Continual Multi-task Learning、不同层次的预训练任务能够提取lexical\syntactic\semantic information。

1、Continual Multi-task Learning

连续的多任务学习能记住之前学习到的信息。

上游的预训练任务和下游特定任务的Fine-tuning的闭环。

2、Pre-training Tasks

三个层次的预训练任务:

(1)Word-aware task: capture the lexical information

(2)Structure-aware task: capture the syntactic information

(3)Semantic-aware task: semantic information

2.1、Word-aware

  • Knowledge Masking:同ERNIE 1.0的实体/短语 masking
  • Capitalization Prediction:token大小写预测的任务
  • Token-Document Relation Prediction:预测句子中的词是否出现在了segment原始文档中,约等于预测token是否为关键词

2.2、Structure-aware

  • Sentence Reordering(语序关系):打乱k个句子,预测原始顺序(给每个句子做k分类)
  • Sentence Distance(语义距离):3分类任务,预测两个句子是相连、出现在同一个文档还是在不同文档

2.3、Semantic-aware

  • Discourse Relation:判断句子的语义关系,例如logical relationship (is a, has a, contract)
  • IR Relevance Task:
相关推荐
小雨中_20 小时前
3.1 RLHF:基于人类反馈的强化学习
人工智能·python·深度学习·算法·动态规划
MaoziShan21 小时前
CMU Subword Modeling | 11 Rules of realization and rules of referral
人工智能·语言模型·自然语言处理
phoenix@Capricornus21 小时前
初等数学中点到直线的距离
人工智能·算法·机器学习
田里的水稻21 小时前
FA_规划和控制(PC)-快速探索随机树(RRT)
人工智能·算法·数学建模·机器人·自动驾驶
天才在此21 小时前
AI时代:软件工程的诞生与死亡
人工智能·软件工程
tq108621 小时前
幻亦幻,真更真
人工智能
阿杰学AI1 天前
AI核心知识114—大语言模型之 AI Data Annotator(简洁且通俗易懂版)
人工智能·ai·语言模型·自然语言处理·aigc·ai岗位·ai数据标注师
冬奇Lab1 天前
一天一个开源项目(第28篇):Graphiti - 为 AI Agent 构建实时知识图谱
人工智能·aigc
liliangcsdn1 天前
LLM如何让游戏交互或行为变得更有趣
人工智能