百度ERNIE系列预训练语言模型浅析(2)-ERNIE2.0

Ernie 2.0: A Continual Pre-Training Framework for Language Understanding

Sun Y, Wang S, Li Y, et al. Ernie 2.0: A continual pre-training framework for language understanding[C]//Proceedings of the AAAI * Conference on Artificial Intelligence. 2020, 34(05): 8968-8975.

关键词:Continual Multi-task Learning

概括:加入更多的预训练任务,为了有效的训练采用了连续训练的方法。

以前的模型只能学到简单的共现信息,其他有价值的信息,比如lexical\syntactic\semantic information都没有被提取出来。

因此本文Continual Multi-task Learning、不同层次的预训练任务能够提取lexical\syntactic\semantic information。

1、Continual Multi-task Learning

连续的多任务学习能记住之前学习到的信息。

上游的预训练任务和下游特定任务的Fine-tuning的闭环。

2、Pre-training Tasks

三个层次的预训练任务:

(1)Word-aware task: capture the lexical information

(2)Structure-aware task: capture the syntactic information

(3)Semantic-aware task: semantic information

2.1、Word-aware

  • Knowledge Masking:同ERNIE 1.0的实体/短语 masking
  • Capitalization Prediction:token大小写预测的任务
  • Token-Document Relation Prediction:预测句子中的词是否出现在了segment原始文档中,约等于预测token是否为关键词

2.2、Structure-aware

  • Sentence Reordering(语序关系):打乱k个句子,预测原始顺序(给每个句子做k分类)
  • Sentence Distance(语义距离):3分类任务,预测两个句子是相连、出现在同一个文档还是在不同文档

2.3、Semantic-aware

  • Discourse Relation:判断句子的语义关系,例如logical relationship (is a, has a, contract)
  • IR Relevance Task:
相关推荐
AI周红伟5 分钟前
周红伟:2026年10个AI预言:迈向AGI通用人工智能体时代
大数据·人工智能·机器学习·大模型·agi·智能体·seedance
YMWM_5 分钟前
论文阅读“DM0: An Embodied-Native Vision-Language-Action Model towards Physical AI“
论文阅读·人工智能·vla
tzc_fly15 分钟前
大语言模型SFT后训练:SFT,DFT,ASFT,ProFit,BFT,RAFT
人工智能·机器学习·语言模型
Suryxin.25 分钟前
从0开始复现nano-vllm「llm_engine.py」
人工智能·python·深度学习·ai·vllm
Testopia26 分钟前
车道线检测:传统计算机视觉在自动驾驶中的应用
人工智能·计算机视觉·自动驾驶
阿杰学AI28 分钟前
AI核心知识109—大语言模型之 Industry Agent Operations Specialist(简洁且通俗易懂版)
大数据·人工智能·ai·语言模型·agent·智能体·行业智能体运营师
我会冲击波31 分钟前
UI UX Pro Max:给 AI 请个设计师
人工智能·程序员
MaxStormBot31 分钟前
WPS Office Skill v1.3.0 发布:全格式图文混排 + Markdown 三件套转换
人工智能
Asher阿舍技术站38 分钟前
【AI基础学习系列】五、AIGC从创意到创造
人工智能·学习·aigc·进阶
ZhengEnCi39 分钟前
05. 文本分块策略设计
人工智能