UVa11604 General Sultan

UVa11604 General Sultan

题目链接

UVA - 11604 General Sultan

题意

给出一些0和1组成的模式串,问是否存在一个串使得有多种方案将这个串分解成模式串。

给一个包含n(n≤100)个符号的二进制编码方式,是否存在一个二进制序列,存在至少两种解码方法。比如{a=01, b=001, c=01001}是有歧义的,因为01001可以解码为a+b或者c。每个编码由不超过20个0或1组成。

分析

很好的一道图论建模题目!思路来自于HouseFangFZC的博文

先看一个两种方案去拼接形成同一个串的图:

可以发现总是一个方案新追加的串和另一个方案当前未匹配部分做匹配,并且其中一者完全匹配掉,另一者有剩余部分(或者另一者也匹配完,即找到了两种不同拼接方案)。

将每个模式串的每一个字符看成一个结点,并额外增加起点s、终点t两个虚拟结点。首先起点与每个模式串的首字母连一条有向边。对于第i个模式串,考虑其第 h i h_i hi个字符开始的子串(对应节点u),若其与第j个模式串做匹配(注意 h i = 0 h_i=0 hi=0时, j ≠ i j\ne i j=i)满足至少一者匹配到结尾,则连有向边,分三种情况:若两者都匹配完,则 u → t u\rightarrow t u→t;若模式串j的首个未匹配字符是 h j h_j hj(对应节点v),则 u → v u\rightarrow v u→v;若子串 h i h_i hi的首个未匹配字符是 h x h_x hx(对应节点w),则 u → w u\rightarrow w u→w。

有向图建完后,跑一遍dfs,看起点s能否到达终点t就能解决问题。

AC 代码

cpp 复制代码
#include <iostream>
#include <cstring>
using namespace std;

#define L 22
#define N 101
int g[N*L][N*L], c[N*L], e[N], t[N], m, n, kase = 0; char s[N][L], tmp[L]; bool vis[N*L];

int common(int i, int h, int j) {
    int k = 0;
    while (h < e[i]) {
        if (s[i][h] != s[j][k]) return k;
        ++h; ++k;
    }
    return k;
}

bool dfs(int u = 0) {
    if (u == m) return true;
    vis[u] = true;
    for (int i=0, v; i<c[u]; ++i) if (!vis[v = g[u][i]] && dfs(v)) return true;
    return false;
}

void solve() {
    memset(c, 0, sizeof(c)); memset(vis, 0, sizeof(vis));
    for (int i=0; i<n; ++i) cin >> tmp >> s[i], e[i] = strlen(s[i]), g[0][c[0]++] = t[i] = i<1 ? 1 : t[i-1] + e[i-1];
    m = t[n-1] + e[n-1];
    for (int i=0; i<n; ++i) for (int j=0; j<e[i]; ++j) for (int k=0; k<n; ++k) {
        if (i==k && j==0) continue;
        int cc = common(i, j, k), u = t[i]+j;
        if (cc == e[k] && cc+j == e[i]) g[u][c[u]++] = m;
        else if (cc < e[k] && cc+j == e[i]) g[u][c[u]++] = t[k] + cc;
        else if (cc == e[k] && cc+j < e[i]) g[u][c[u]++] = u + cc;
    }
    cout << "Case #" << ++kase << (dfs() ? ": Ambiguous." : ": Not ambiguous.") << endl;
}

int main() {
    ios::sync_with_stdio(false); cin.tie(0); cout.tie(0);
    while (cin >> n && n) solve();
    return 0;
}
相关推荐
散11211 小时前
01数据结构-Prim算法
数据结构·算法·图论
KyollBM15 小时前
【图论】分层图 / 拆点
图论
GawynKing18 小时前
图论(5)最小生成树算法
算法·图论·最小生成树
KarrySmile20 小时前
Day60--图论--94. 城市间货物运输 I(卡码网),95. 城市间货物运输 II(卡码网),96. 城市间货物运输 III(卡码网)
图论·spfa·bellman_ford·队列优化·最短路算法·负权回路·单源有限最短路
花开富贵ii1 天前
代码随想录算法训练营四十三天|图论part01
java·数据结构·算法·深度优先·图论
yi.Ist2 天前
图论——Djikstra最短路
数据结构·学习·算法·图论·好难
KarrySmile2 天前
Day55--图论--107. 寻找存在的路径(卡码网)
图论·并查集·寻找存在的路径
KarrySmile2 天前
Day62--图论--97. 小明逛公园(卡码网),127. 骑士的攻击(卡码网)
图论·floyd·floyd算法·弗洛伊德算法·astar算法·小明逛公园·骑士的攻击
CUC-MenG3 天前
2025牛客多校第九场 G.排列 A.AVL树 F.军训 个人题解
数学·dfs·dp·笛卡尔树·组合数·曼哈顿距离·树上dp
Morriser莫3 天前
图论Day2学习心得
算法·图论