R语言绘图 | 双Y轴截断图

教程原文:双Y轴截断图绘制教程

本期教程

本期教程,我们提供的原文的译文,若有需求请回复关键词:20240529
小杜的生信笔记 ,自2021年11月开始做的知识分享,主要内容是R语言绘图教程转录组上游分析转录组下游分析等内容。凡事在社群同学,可免费获得自2021年11月份至今全部教程,教程配备事例数据和相关代码,我们会持续更新中。

往期教程部分内容













复制代码
教程来源:
Yunyun Gao, Hao Luo, Yong-Xin Liu,et al, Benchmarking metagenomics tools for purging host contamination.

绘图代码

R 复制代码
library(ggplot2)
library(tidyverse)
library(ggbreak)
library(dunn.test)
library(car)
R 复制代码
data <- read.table("data.txt", head = TRUE, sep = "\t")
R 复制代码
# Select the relevant columns for data1
data1 <- data[, c("Software", "Taxa", "Rss")]
data2 <- data[, c("Software", "Taxa", "Time")]

data1$Software <- factor(data1$Software, levels = c( "BWA","Bowtie2","Kneaddata", "KMCP", "Kraken2", "Krakenuniq"))
R 复制代码
ggplot(data1) +
  geom_col(aes(x = Software, y = Rss, fill = Taxa), position = 'dodge', width = 0.8) +
  scale_fill_manual(values = c('Rice' = '#fec79e', 'Human' = '#8ec4cb')) +
  labs(x = "Software", y = "Memory usage / Gigabytes") +
  theme_minimal() +
  theme_test(base_size = 24) +
  theme(
    legend.position = 'none',
    panel.border = element_rect(size = 2, fill = 'transparent'),
    axis.text = element_text(color = 'black'),
    axis.text.x = element_text(angle = 45, hjust = 1)  # Rotate x-axis labels for better visibility
  ) +
  geom_rect(aes(xmin = 0.5, xmax = 0.8, ymin = 53, ymax = 57), fill = '#8ec4cb', color = '#8ec4cb') +
  geom_rect(aes(xmin = 1.4, xmax = 1.7, ymin = 53, ymax = 57), fill = '#fec79e', color = '#fec79e') +
  annotate(geom = 'text', x = 1.9, y = 55, label = 'Rice', size = 7) +
  annotate(geom = 'text', x = 1.1, y = 55, label = 'Human', size = 7) +
  scale_y_continuous(
    breaks = c(seq(0, 10, 10), seq(5, 10, 5), seq(20, 60, 10)),
    limits = c(0, 60),
    expand = c(0, 0),
    sec.axis = sec_axis(~ .*5, name = 'Time consumption / minutes', breaks = c(seq(0, 50, 25), seq(50, 300, 50)))
  ) +
  geom_point(data = data2, aes(x = factor(Software), y = Time * 0.2, color = Taxa, group = Taxa), shape=17, size = 5, na.rm = TRUE) +
  scale_color_manual(values = c('#1e8b9b', '#ff8c3e')) +
  scale_y_break(c(6,11), space = 0, scales = 1.8)

Check Time of all taxa, Normality test

R 复制代码
shapiro_test <- by(data$Time, data$Taxa, shapiro.test)

# Extract p-values from each group's test results
p_values <- sapply(shapiro_test, function(x) x$p.value)

# Check if each group conforms to normal distribution
normal_data <- p_values > 0.05

if (all(normal_data)) {
summary_stats <- aggregate(Time ~ Taxa, data = data, FUN = function(x) c(mean = mean(x), se = sd(x)/sqrt(length(x))))
print(summary_stats)
} else {
summary_stats <- aggregate(Time ~ Taxa, data = data, FUN = function(x) c(median = median(x), p25 = quantile(x, 0.25), p75 = quantile(x, 0.75)))
print(summary_stats)
}
#>    Taxa Time.mean   Time.se
#> 1 Human 99.474900 35.348141
#> 2  Rice  8.478217  2.883665

levene_test_result <- leveneTest(Time ~ Taxa, data = data)
p_value_levene <- levene_test_result$`Pr(>F)`[1]

if (all(normal_data)) {
if (p_value_levene > 0.05) {
  t_test_result <- t.test(Time ~ Taxa, data = data, paired = TRUE)
  print(t_test_result)
} else {
  wilcox_result <- wilcox.test(Time ~ Taxa, data = data, paired = TRUE)
  print(wilcox_result)
}
} else {
wilcox_result <- wilcox.test(Time ~ Taxa, data = data, paired = TRUE)
print(wilcox_result)
}
#> 
#>  Wilcoxon signed rank exact test
#> 
#> data:  Time by Taxa
#> V = 21, p-value = 0.03125
#> alternative hypothesis: true location shift is not equal to 0
R 复制代码
shapiro_test <- by(data$Rss, data$Taxa, shapiro.test)

# Extract p-values from each group's test results
p_values <- sapply(shapiro_test, function(x) x$p.value)

# Check if each group conforms to normal distribution
normal_data <- p_values > 0.05

if (all(normal_data)) {
  summary_stats <- aggregate(Rss ~ Taxa, data = data, FUN = function(x) c(mean = mean(x), se = sd(x)/sqrt(length(x))))
  print(summary_stats)
} else {
  summary_stats <- aggregate(Rss ~ Taxa, data = data, FUN = function(x) c(median = median(x), p25 = quantile(x, 0.25), p75 = quantile(x, 0.75)))
  print(summary_stats)
}
#>    Taxa Rss.median Rss.p25.25% Rss.p75.75%
#> 1 Human  5.6300000   4.8150000  18.2650000
#> 2  Rice  0.8040332   0.5614160   2.1725659

levene_test_result <- leveneTest(Rss ~ Taxa, data = data)
p_value_levene <- levene_test_result$`Pr(>F)`[1]

if (all(normal_data)) {
  if (p_value_levene > 0.05) {
    t_test_result <- t.test(Rss ~ Taxa, data = data, paired = TRUE)
    print(t_test_result)
  } else {
    wilcox_result <- wilcox.test(Rss ~ Taxa, data = data, paired = TRUE)
    print(wilcox_result)
  }
} else {
  wilcox_result <- wilcox.test(Rss ~ Taxa, data = data, paired = TRUE)
  print(wilcox_result)
}
#> 
#>  Wilcoxon signed rank exact test
#> 
#> data:  Rss by Taxa
#> V = 21, p-value = 0.03125
#> alternative hypothesis: true location shift is not equal to 0

教程原文:双Y轴截断图绘制教程

若我们的教程对你有所帮助,请点赞+收藏+转发,这是对我们最大的支持。

往期部分文章

1. 最全WGCNA教程(替换数据即可出全部结果与图形)


2. 精美图形绘制教程

3. 转录组分析教程

4. 转录组下游分析

小杜的生信筆記 ,主要发表或收录生物信息学教程,以及基于R分析和可视化(包括数据分析,图形绘制等);分享感兴趣的文献和学习资料!!

相关推荐
Faker66363aaa15 小时前
药品包装识别与分类系统:基于Faster R-CNN R50 FPN的Groie数据集训练_1
分类·r语言·cnn
Liue612312312 天前
自卸车多部件识别 _ Mask R-CNN改进模型实现(Caffe+FPN)_1
r语言·cnn·caffe
jiang_changsheng3 天前
环境管理工具全景图与深度对比
java·c语言·开发语言·c++·python·r语言
JicasdC123asd3 天前
使用Faster R-CNN模型训练汽车品牌与型号检测数据集 改进C4结构 优化汽车识别系统 多类别检测 VOC格式
r语言·cnn·汽车
请你喝好果汁6414 天前
## 学习笔记:R 语言中比例字符串的数值转换,如GeneRatio中5/100的处理
笔记·学习·r语言
怦怦蓝4 天前
DB2深度解析:从架构原理到与R语言的集成实践
开发语言·架构·r语言·db2
新新学长搞科研4 天前
【CCF主办 | 高认可度会议】第六届人工智能、大数据与算法国际学术会议(CAIBDA 2026)
大数据·开发语言·网络·人工智能·算法·r语言·中国计算机学会
Piar1231sdafa4 天前
战斗车辆状态识别与分类 --- 基于Mask R-CNN和RegNet的模型实现
r语言·cnn
陳土5 天前
R语言Offier包源码—1:read_docx()
r语言
善木科研喵5 天前
IF5.9分,α-硫辛酸如何缓解化疗神经毒性?网络毒理学结合网络药理学双重锁定关键通路!
数据库·数据分析·r语言·sci·生信分析·医学科研