OpenMV学习笔记4——二维码识别

一、示例程序

按照下图顺序点击,即可打开官方在IDE中准备好的二维码实例程序:

python 复制代码
# QRCode Example
#
# This example shows the power of the OpenMV Cam to detect QR Codes
# using lens correction (see the qrcodes_with_lens_corr.py script for higher performance).

import sensor
import time

sensor.reset()
sensor.set_pixformat(sensor.RGB565)
sensor.set_framesize(sensor.QVGA)
sensor.skip_frames(time=2000)
sensor.set_auto_gain(False)  # must turn this off to prevent image washout...
clock = time.clock()

while True:
    clock.tick()
    img = sensor.snapshot()
    img.lens_corr(1.8)  # strength of 1.8 is good for the 2.8mm lens.
    for code in img.find_qrcodes():
        img.draw_rectangle(code.rect(), color=(255, 0, 0))
        print(code)
    print(clock.fps())

二、代码讲解

上来依旧是老三样:导入依赖的包、初始化摄像头、设置像素模式即图像大小。

在本例中,自动增益也是需要关闭的,防止图像变形。

在主函数中,我们依然是将捕获到的图像命名为img,"lmg.lens_corr"是执行镜头矫正,防止图像变形影响识别结果。函数原型为"img.lens_corr([strength=1.8[,zoom=1.0[,x_corr=0.0[,y_corr=0.0]]]])",

  • "strength"是浮点数,代表了镜头矫正的强度,一般尝试1.8,并不断进行调整,直到图像看起来不错。
  • "zoom"是要缩放图像大小,默认1.0。
  • "x_corr"是像素中心偏移量,可以是正数与可以是负数。"y_corr"同理。

"img.find_qrcodes()"函数是在规定区域内寻找二维码,函数原型为"img.find_qrcodes([roi])"

  • 查找指定[roi]区域内的所有QRcode并返回一个image列表。要求图像相对平坦,此时我们上一个介绍的函数便起了作用。
  • roi是感兴趣矩形元组(x,y,w,h),如果没有指定,默认在捕获到的整体图像上寻找。

之后便是在寻找到的图像上画框,并将捕获到的"code"对象打印出来。

运行效果如下:

可以看到,在命令窗口,除了显示每秒的帧率外,还有捕获到的二维码信息:

{"x":81, "y":17, "w":195, "h":195, "payload":"Hello World!", "version":2, "ecc_level":2, "mask":0, "data_type":4, "eci":0}

相关推荐
日更嵌入式的打工仔11 分钟前
Ethercat EOE笔记
网络·笔记·ethercat
股朋公式网14 分钟前
斩仙飞刀、 通达信飞刀 源码
python·算法
不吃橘子的橘猫14 分钟前
NVIDIA DLI 《Build a Deep Research Agent》学习笔记
开发语言·数据库·笔记·python·学习·算法·ai
算法与双吉汉堡18 分钟前
【短链接项目笔记】6 短链接跳转
java·开发语言·笔记·后端·springboot
学Linux的语莫19 分钟前
python的基础使用
开发语言·python
万粉变现经纪人29 分钟前
如何解决 pip install SSL 报错 ValueError: check_hostname requires server_hostname 问题
网络·python·网络协议·beautifulsoup·bug·ssl·pip
逻极30 分钟前
FastAPI + SQLAlchemy 现代API项目实战:从零到上手的Python MySQL开发指南
python·mysql·fastapi·异步·sqlalchemy
吃人陈乐游刘34 分钟前
06实战经验X-anylabelingAI自动标注数据集-本地实现-方法二(2025年12月)保姆级教程
python·miniforge·xanylabeling
玄同76534 分钟前
Python 正则表达式:LLM 噪声语料的精准清洗
人工智能·python·自然语言处理·正则表达式·nlp·知识图谱·rag
刘孬孬沉迷学习35 分钟前
层与天线的区别
网络·学习·5g·信息与通信·mimo·预编码·层映射