OpenMV学习笔记4——二维码识别

一、示例程序

按照下图顺序点击,即可打开官方在IDE中准备好的二维码实例程序:

python 复制代码
# QRCode Example
#
# This example shows the power of the OpenMV Cam to detect QR Codes
# using lens correction (see the qrcodes_with_lens_corr.py script for higher performance).

import sensor
import time

sensor.reset()
sensor.set_pixformat(sensor.RGB565)
sensor.set_framesize(sensor.QVGA)
sensor.skip_frames(time=2000)
sensor.set_auto_gain(False)  # must turn this off to prevent image washout...
clock = time.clock()

while True:
    clock.tick()
    img = sensor.snapshot()
    img.lens_corr(1.8)  # strength of 1.8 is good for the 2.8mm lens.
    for code in img.find_qrcodes():
        img.draw_rectangle(code.rect(), color=(255, 0, 0))
        print(code)
    print(clock.fps())

二、代码讲解

上来依旧是老三样:导入依赖的包、初始化摄像头、设置像素模式即图像大小。

在本例中,自动增益也是需要关闭的,防止图像变形。

在主函数中,我们依然是将捕获到的图像命名为img,"lmg.lens_corr"是执行镜头矫正,防止图像变形影响识别结果。函数原型为"img.lens_corr([strength=1.8[,zoom=1.0[,x_corr=0.0[,y_corr=0.0]]]])",

  • "strength"是浮点数,代表了镜头矫正的强度,一般尝试1.8,并不断进行调整,直到图像看起来不错。
  • "zoom"是要缩放图像大小,默认1.0。
  • "x_corr"是像素中心偏移量,可以是正数与可以是负数。"y_corr"同理。

"img.find_qrcodes()"函数是在规定区域内寻找二维码,函数原型为"img.find_qrcodes([roi])"

  • 查找指定[roi]区域内的所有QRcode并返回一个image列表。要求图像相对平坦,此时我们上一个介绍的函数便起了作用。
  • roi是感兴趣矩形元组(x,y,w,h),如果没有指定,默认在捕获到的整体图像上寻找。

之后便是在寻找到的图像上画框,并将捕获到的"code"对象打印出来。

运行效果如下:

可以看到,在命令窗口,除了显示每秒的帧率外,还有捕获到的二维码信息:

{"x":81, "y":17, "w":195, "h":195, "payload":"Hello World!", "version":2, "ecc_level":2, "mask":0, "data_type":4, "eci":0}

相关推荐
Niuguangshuo4 分钟前
Python 设计模式:访问者模式
python·设计模式·访问者模式
Jamesvalley7 分钟前
【Django】新增字段后兼容旧接口 This field is required
后端·python·django
Luck_ff081036 分钟前
【Python爬虫详解】第四篇:使用解析库提取网页数据——BeautifuSoup
开发语言·爬虫·python
学渣6765643 分钟前
什么时候使用Python 虚拟环境(venv)而不用conda
开发语言·python·conda
陶然同学1 小时前
RabbitMQ全栈实践手册:从零搭建消息中间件到SpringAMQP高阶玩法
java·分布式·学习·rabbitmq·mq
悲喜自渡7211 小时前
线性代数(一些别的应该关注的点)
python·线性代数·机器学习
Huanzhi_Lin2 小时前
python源码打包为可执行的exe文件
python
欧先生^_^2 小时前
学习 Apache Kafka
学习·kafka·apache
声声codeGrandMaster2 小时前
django之账号管理功能
数据库·后端·python·django
妙极矣2 小时前
JAVAEE初阶01
java·学习·java-ee