PromptIR论文阅读笔记

  • MZUAI和IIAI在NIPS2023上的一篇论文,用prompt来编码degradation,然后用来guide restoration network,使得模型能够泛化到不同degradation types and levels,也就是说是一个模型一次训练能够应对多种degradation的unified model。
  • 文章分析,对每种degradation都要train一个模型是compute-intensive and tedious process, and oftentimes impractical for resource-constrained platforms. 同时,为了对一张图片进行restore,需要提前知道degradation以选择对应的模型。因此本文提出这样的框架,对输入图片,用一个PGM来生成degradation prompt,然后在现有restoration网络中插入PIM,利用degradation prompt来实现对多种degradation的差异化处理,实现一个unified网络完成多种restoration任务。
  • 具体如下图所示,主要就是这个PGM和PIM。首先预定义好一些prompt components,他们是可训练的参数,有固定的size,是CHW的。然后在每个块里面,会对prompt components进行bilinear upsampling到本层特征的size大小,然后用w对不同通道分配权重后再过一层3x3卷积然后和本层特征concatenate到一起去处理。w是从本层特征经过GAP,全连接,softmax后得到的。整个网络的backbone用的是restormer:
  • 实验部分,做了两类实验,一类是single task的,就是一个task train一个模型,去测。multi-task的,就是在混合的数据集中train一个模型,去多个task上测。可以看到all-in-one的结果确实是sota,虽然在denoising上优势不高,但在其它两个任务上有很大优势:
  • 而在single task也达到了各个任务的sota:
  • 评价:我有一点强烈的质疑,就是prompt是CHW这个事情,从数学上看就非常不合理。concatenate进去的prompt,如果代表的是degradation信息,为什么在不同的位置有不同的预设值?难道所有的图片的degradation的空间分布都一样吗?假设其中一个通道代表噪声强度,那这个HxW的map的实际意义是什么呢?噪声强度?那这个map的左上角比中间小,难道代表对所有图片来说,左上角的噪声强度都比中间小吗?这个CHW的prompt总之在可解释性上非常存疑。
相关推荐
_李小白6 分钟前
【OPENGL ES 3.0 学习笔记】第一天:认识渲染管道
笔记·学习
bnsarocket38 分钟前
Verilog和FPGA的自学笔记4——多路选择器(always语句)
笔记·fpga开发·编程·verilog·自学·硬件编程
你也渴望鸡哥的力量么4 小时前
爬虫学习笔记
笔记·爬虫·学习
日更嵌入式的打工仔4 小时前
InitLWIP() 初始化
笔记·嵌入式硬件·学习
峰顶听歌的鲸鱼4 小时前
38.Shell脚本编程2
linux·运维·服务器·笔记·学习方法
berling004 小时前
【论文阅读 | TCSVT 2024 | CCAFusion: 用于红外与可见光图像融合的跨模态坐标注意力网络】
论文阅读
0x2114 小时前
[论文阅读]Dataset Protection via Watermarked Canaries in Retrieval-Augmented LLMs
论文阅读
bylander4 小时前
【论文阅读】通义实验室,VACE: All-in-One Video Creation and Editing
论文阅读·人工智能·计算机视觉·音视频
飞机火车巴雷特4 小时前
【论文阅读】Debating with More Persuasive LLMs Leads to More Truthful Answers
论文阅读·大模型·辩论机制
红苕稀饭6664 小时前
LLAVA-MINI论文阅读
论文阅读