PromptIR论文阅读笔记

  • MZUAI和IIAI在NIPS2023上的一篇论文,用prompt来编码degradation,然后用来guide restoration network,使得模型能够泛化到不同degradation types and levels,也就是说是一个模型一次训练能够应对多种degradation的unified model。
  • 文章分析,对每种degradation都要train一个模型是compute-intensive and tedious process, and oftentimes impractical for resource-constrained platforms. 同时,为了对一张图片进行restore,需要提前知道degradation以选择对应的模型。因此本文提出这样的框架,对输入图片,用一个PGM来生成degradation prompt,然后在现有restoration网络中插入PIM,利用degradation prompt来实现对多种degradation的差异化处理,实现一个unified网络完成多种restoration任务。
  • 具体如下图所示,主要就是这个PGM和PIM。首先预定义好一些prompt components,他们是可训练的参数,有固定的size,是CHW的。然后在每个块里面,会对prompt components进行bilinear upsampling到本层特征的size大小,然后用w对不同通道分配权重后再过一层3x3卷积然后和本层特征concatenate到一起去处理。w是从本层特征经过GAP,全连接,softmax后得到的。整个网络的backbone用的是restormer:
  • 实验部分,做了两类实验,一类是single task的,就是一个task train一个模型,去测。multi-task的,就是在混合的数据集中train一个模型,去多个task上测。可以看到all-in-one的结果确实是sota,虽然在denoising上优势不高,但在其它两个任务上有很大优势:
  • 而在single task也达到了各个任务的sota:
  • 评价:我有一点强烈的质疑,就是prompt是CHW这个事情,从数学上看就非常不合理。concatenate进去的prompt,如果代表的是degradation信息,为什么在不同的位置有不同的预设值?难道所有的图片的degradation的空间分布都一样吗?假设其中一个通道代表噪声强度,那这个HxW的map的实际意义是什么呢?噪声强度?那这个map的左上角比中间小,难道代表对所有图片来说,左上角的噪声强度都比中间小吗?这个CHW的prompt总之在可解释性上非常存疑。
相关推荐
Love__Tay38 分钟前
【学习笔记】Python金融基础
开发语言·笔记·python·学习·金融
半导体守望者1 小时前
ADVANTEST R3764 66 R3765 67爱德万测试networki connection programming网络程序设计手册
经验分享·笔记·功能测试·自动化·制造
颜妮儿1 小时前
论文笔记——相干体技术在裂缝预测中的应用研究
论文阅读
柠石榴2 小时前
【论文阅读笔记】《A survey on deep learning approaches for text-to-SQL》
论文阅读·笔记·深度学习·nlp·text-to-sql
张较瘦_2 小时前
[论文阅读] 人工智能 | 搜索增强LLMs的用户偏好与性能分析
论文阅读·人工智能
田梓燊3 小时前
数学复习笔记 27
笔记
Lester_11013 小时前
嵌入式学习笔记 - freeRTOS xTaskResumeAll( )函数解析
笔记·stm32·单片机·学习·freertos
jackson凌3 小时前
【Java学习笔记】Math方法
java·笔记·学习
z2014z3 小时前
软件评测师 综合测试 真题笔记
笔记
Humbunklung3 小时前
PySide6 GUI 学习笔记——常用类及控件使用方法(多行文本控件QTextEdit)
笔记·python·学习·pyqt