pytorch-池化层

目录

  • [1. pooling池化层](#1. pooling池化层)
    • [1.1 down sample](#1.1 down sample)
    • [2.2 Max pooling](#2.2 Max pooling)
    • [1.3 Avg pooling](#1.3 Avg pooling)
    • [1.3 pooling pytorch实现](#1.3 pooling pytorch实现)
  • [2. up sample上采样](#2. up sample上采样)
    • [2.1 up sample](#2.1 up sample)
    • [2.2 pytorch实现](#2.2 pytorch实现)
  • [3. ReLU](#3. ReLU)

1. pooling池化层

1.1 down sample

见下图,隔行隔列采样

2.2 Max pooling

下图采用2x2的filter,步长是2,找到每个窗口的最大值

1.3 Avg pooling

下图采用2x2的filter,步长是2,求每个窗口的平均值值

1.3 pooling pytorch实现

pooling在pytorch也有两种方法,一种是类方法nn.MaxPool2d,另一种是F.avg_pool2d

总结:池化层的作用就是下采样

2. up sample上采样

2.1 up sample

图像上采样类似下图

2.2 pytorch实现

上采样使用F.interpolate函数

scale_factor决定了上采样的倍数

mode参数是插值算法,具体见官方文档

3. ReLU

下图是ReLU前后的两张feature map

ReLu input>0时,out是个线性函数

input<0时,out = 0

从图中可以看出在ReLU的作用下,负值变为0

pytorch实现

ReLU在pytorch也有两种方法,一种是类方法nn.ReLU,另一种是F.relu

相关推荐
yunhuibin6 小时前
AlexNet网络学习
人工智能·python·深度学习·神经网络
肾透侧视攻城狮6 小时前
《从fit()到分布式训练:深度解锁TensorFlow模型训练全栈技能》
人工智能·深度学习·tensorflow 模型训练·模型训练中的fit方法·自定义训练循环·回调函数使用·混合精度/分布式训练
索木木6 小时前
大模型训练CP切分(与TP、SP结合)
人工智能·深度学习·机器学习·大模型·训练·cp·切分
喵手7 小时前
Python爬虫实战:增量爬虫实战 - 利用 HTTP 缓存机制实现“极致减负”(附CSV导出 + SQLite持久化存储)!
爬虫·python·爬虫实战·零基础python爬虫教学·增量爬虫·http缓存机制·极致减负
DevilSeagull7 小时前
C语言: 动态内存管理
人工智能·语言模型·自然语言处理
一个处女座的程序猿O(∩_∩)O7 小时前
Python异常处理完全指南:KeyError、TypeError、ValueError深度解析
开发语言·python
was1727 小时前
使用 Python 脚本一键上传图片到兰空图床并自动复制链接
python·api上传·自建图床·一键脚本
破晓之翼7 小时前
从第一性原理和工程控制论角度企业去思考AI开发避免完美主义陷阱
人工智能
njsgcs7 小时前
屏幕元素定位(Grounding) ollama两个模型
人工智能
码农杂谈00077 小时前
企业 AI 推理:告别黑箱决策,4 步构建可解释 AI 体系
大数据·人工智能