pytorch-池化层

目录

  • [1. pooling池化层](#1. pooling池化层)
    • [1.1 down sample](#1.1 down sample)
    • [2.2 Max pooling](#2.2 Max pooling)
    • [1.3 Avg pooling](#1.3 Avg pooling)
    • [1.3 pooling pytorch实现](#1.3 pooling pytorch实现)
  • [2. up sample上采样](#2. up sample上采样)
    • [2.1 up sample](#2.1 up sample)
    • [2.2 pytorch实现](#2.2 pytorch实现)
  • [3. ReLU](#3. ReLU)

1. pooling池化层

1.1 down sample

见下图,隔行隔列采样

2.2 Max pooling

下图采用2x2的filter,步长是2,找到每个窗口的最大值

1.3 Avg pooling

下图采用2x2的filter,步长是2,求每个窗口的平均值值

1.3 pooling pytorch实现

pooling在pytorch也有两种方法,一种是类方法nn.MaxPool2d,另一种是F.avg_pool2d

总结:池化层的作用就是下采样

2. up sample上采样

2.1 up sample

图像上采样类似下图

2.2 pytorch实现

上采样使用F.interpolate函数

scale_factor决定了上采样的倍数

mode参数是插值算法,具体见官方文档

3. ReLU

下图是ReLU前后的两张feature map

ReLu input>0时,out是个线性函数

input<0时,out = 0

从图中可以看出在ReLU的作用下,负值变为0

pytorch实现

ReLU在pytorch也有两种方法,一种是类方法nn.ReLU,另一种是F.relu

相关推荐
shayudiandian10 分钟前
用深度学习实现语音识别系统
人工智能·深度学习·语音识别
EkihzniY6 小时前
AI+OCR:解锁数字化新视界
人工智能·ocr
东哥说-MES|从入门到精通6 小时前
GenAI-生成式人工智能在工业制造中的应用
大数据·人工智能·智能制造·数字化·数字化转型·mes
程序员小远7 小时前
软件测试之单元测试详解
自动化测试·软件测试·python·测试工具·职场和发展·单元测试·测试用例
心无旁骛~7 小时前
python多进程和多线程问题
开发语言·python
铅笔侠_小龙虾7 小时前
深度学习理论推导--梯度下降法
人工智能·深度学习
星云数灵7 小时前
使用Anaconda管理Python环境:安装与验证Pandas、NumPy、Matplotlib
开发语言·python·数据分析·pandas·教程·环境配置·anaconda
kaikaile19957 小时前
基于遗传算法的车辆路径问题(VRP)解决方案MATLAB实现
开发语言·人工智能·matlab
lpfasd1237 小时前
第1章_LangGraph的背景与设计哲学
人工智能
计算机毕设匠心工作室8 小时前
【python大数据毕设实战】青少年抑郁症风险数据分析可视化系统、Hadoop、计算机毕业设计、包括数据爬取、数据分析、数据可视化、机器学习
后端·python