pytorch-池化层

目录

  • [1. pooling池化层](#1. pooling池化层)
    • [1.1 down sample](#1.1 down sample)
    • [2.2 Max pooling](#2.2 Max pooling)
    • [1.3 Avg pooling](#1.3 Avg pooling)
    • [1.3 pooling pytorch实现](#1.3 pooling pytorch实现)
  • [2. up sample上采样](#2. up sample上采样)
    • [2.1 up sample](#2.1 up sample)
    • [2.2 pytorch实现](#2.2 pytorch实现)
  • [3. ReLU](#3. ReLU)

1. pooling池化层

1.1 down sample

见下图,隔行隔列采样

2.2 Max pooling

下图采用2x2的filter,步长是2,找到每个窗口的最大值

1.3 Avg pooling

下图采用2x2的filter,步长是2,求每个窗口的平均值值

1.3 pooling pytorch实现

pooling在pytorch也有两种方法,一种是类方法nn.MaxPool2d,另一种是F.avg_pool2d

总结:池化层的作用就是下采样

2. up sample上采样

2.1 up sample

图像上采样类似下图

2.2 pytorch实现

上采样使用F.interpolate函数

scale_factor决定了上采样的倍数

mode参数是插值算法,具体见官方文档

3. ReLU

下图是ReLU前后的两张feature map

ReLu input>0时,out是个线性函数

input<0时,out = 0

从图中可以看出在ReLU的作用下,负值变为0

pytorch实现

ReLU在pytorch也有两种方法,一种是类方法nn.ReLU,另一种是F.relu

相关推荐
Ginkgo_Lo9 分钟前
【LLM越狱】AI大模型DRA攻击解读与复现
人工智能·安全·ai·语言模型
凯子坚持 c17 分钟前
AI 赋能云端运维:基于 MCP 协议深度集成 Codebuddy CLI 与腾讯云 Lighthouse 的实战全解
运维·人工智能·腾讯云·腾讯轻量云ai创想家
胖达不服输18 分钟前
「日拱一码」087 机器学习——SPARROW
人工智能·python·机器学习·sparrow
minhuan44 分钟前
构建AI智能体:三十一、AI医疗场景实践:医学知识精准问答+临床智能辅助决策CDSS
人工智能·医学知识问答·临床辅助决策·cdss·医学模型
大千AI助手1 小时前
线性预热机制(Linear Warmup):深度学习训练稳定性的关键策略
人工智能·深度学习·大模型·模型训练·学习率·warmup·线性预热机制
七牛云行业应用1 小时前
企业级AI大模型选型指南:从评估部署到安全实践
大数据·人工智能·安全
진영_1 小时前
深度学习打卡第N6周:中文文本分类-Pytorch实现
人工智能·深度学习
龙亘川1 小时前
智慧城市SaaS平台之智慧城管十大核心功能(六):业务指导系统
人工智能·智慧城市
龙亘川1 小时前
智慧城市SaaS平台之智慧城管十大核心功能(七):后台支撑系统
服务器·人工智能·系统架构·智慧城市·运维开发·智慧城市saas平台
cms小程序插件【官方】1 小时前
pbootcms版AI自动发文插件升级到2.0版,支持AI配图、自动提取关键词
人工智能