pytorch-池化层

目录

  • [1. pooling池化层](#1. pooling池化层)
    • [1.1 down sample](#1.1 down sample)
    • [2.2 Max pooling](#2.2 Max pooling)
    • [1.3 Avg pooling](#1.3 Avg pooling)
    • [1.3 pooling pytorch实现](#1.3 pooling pytorch实现)
  • [2. up sample上采样](#2. up sample上采样)
    • [2.1 up sample](#2.1 up sample)
    • [2.2 pytorch实现](#2.2 pytorch实现)
  • [3. ReLU](#3. ReLU)

1. pooling池化层

1.1 down sample

见下图,隔行隔列采样

2.2 Max pooling

下图采用2x2的filter,步长是2,找到每个窗口的最大值

1.3 Avg pooling

下图采用2x2的filter,步长是2,求每个窗口的平均值值

1.3 pooling pytorch实现

pooling在pytorch也有两种方法,一种是类方法nn.MaxPool2d,另一种是F.avg_pool2d

总结:池化层的作用就是下采样

2. up sample上采样

2.1 up sample

图像上采样类似下图

2.2 pytorch实现

上采样使用F.interpolate函数

scale_factor决定了上采样的倍数

mode参数是插值算法,具体见官方文档

3. ReLU

下图是ReLU前后的两张feature map

ReLu input>0时,out是个线性函数

input<0时,out = 0

从图中可以看出在ReLU的作用下,负值变为0

pytorch实现

ReLU在pytorch也有两种方法,一种是类方法nn.ReLU,另一种是F.relu

相关推荐
睡醒了叭几秒前
目标检测-深度学习-SSD模型项目
人工智能·深度学习·目标检测
冰西瓜600几秒前
从项目入手机器学习(五)—— 机器学习尝试
人工智能·深度学习·机器学习
Coding茶水间几秒前
基于深度学习的狗品种检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
开发语言·人工智能·深度学习·yolo·目标检测·机器学习
InterestOriented3 分钟前
中老年线上学习发展:兴趣岛“内容+服务+空间”融合赋能下的体验升级
人工智能·学习
人工智能知识库12 分钟前
华为HCCDA-AI人工智能入门级开发者题库(带详细解析)
人工智能·华为·hccda-ai题库·hccda-ai
AI Echoes21 分钟前
LangChain Runnable组件重试与回退机制降低程序错误率
人工智能·python·langchain·prompt·agent
ZCXZ12385296a26 分钟前
【计算机视觉】基于YOLO13-C3k2-ConvAttn的电动汽车充电桩车位线自动检测与定位系统
人工智能·计算机视觉
qwerasda12385230 分钟前
游戏场景中的敌方目标检测与定位实战使用mask-rcnn_regnetx模型实现
人工智能·目标检测·游戏
硅基流动33 分钟前
从云原生到 AI 的跃迁探索之路|开发者说
大数据·人工智能·云原生
jackywine638 分钟前
零样本学习(Zero-Shot Learning)和少样本学习(Few-Shot Learning)有何区别?AI 是怎么“猜“出来的
人工智能·机器学习