pytorch-池化层

目录

  • [1. pooling池化层](#1. pooling池化层)
    • [1.1 down sample](#1.1 down sample)
    • [2.2 Max pooling](#2.2 Max pooling)
    • [1.3 Avg pooling](#1.3 Avg pooling)
    • [1.3 pooling pytorch实现](#1.3 pooling pytorch实现)
  • [2. up sample上采样](#2. up sample上采样)
    • [2.1 up sample](#2.1 up sample)
    • [2.2 pytorch实现](#2.2 pytorch实现)
  • [3. ReLU](#3. ReLU)

1. pooling池化层

1.1 down sample

见下图,隔行隔列采样

2.2 Max pooling

下图采用2x2的filter,步长是2,找到每个窗口的最大值

1.3 Avg pooling

下图采用2x2的filter,步长是2,求每个窗口的平均值值

1.3 pooling pytorch实现

pooling在pytorch也有两种方法,一种是类方法nn.MaxPool2d,另一种是F.avg_pool2d

总结:池化层的作用就是下采样

2. up sample上采样

2.1 up sample

图像上采样类似下图

2.2 pytorch实现

上采样使用F.interpolate函数

scale_factor决定了上采样的倍数

mode参数是插值算法,具体见官方文档

3. ReLU

下图是ReLU前后的两张feature map

ReLu input>0时,out是个线性函数

input<0时,out = 0

从图中可以看出在ReLU的作用下,负值变为0

pytorch实现

ReLU在pytorch也有两种方法,一种是类方法nn.ReLU,另一种是F.relu

相关推荐
rengang6611 分钟前
03-深度学习与机器学习的对比:分析深度学习与传统机器学习的异同
人工智能·深度学习·机器学习
极客数模15 分钟前
2025年(第六届)“大湾区杯”粤港澳金融数学建模竞赛准备!严格遵循要求,拿下大奖!
大数据·python·数学建模·金融·分类·图论·boosting
倔强青铜三29 分钟前
苦练Python第73天:玩转对象持久化,pickle模块极速入门
人工智能·python·面试
咕咚-萌西30 分钟前
DeepSeek-OCR
人工智能·深度学习·ocr
xcbeyond34 分钟前
从 MCP 到 RAG 再到 Agent:AI 应用架构的下一次跃迁
人工智能
Godspeed Zhao1 小时前
自动驾驶中的传感器技术74——Navigation(11)
人工智能·机器学习·自动驾驶
Godspeed Zhao1 小时前
自动驾驶中的传感器技术75——Navigation(12)
人工智能·机器学习·自动驾驶
程序员三藏1 小时前
Postman持久化保存/设置断言详解
自动化测试·软件测试·python·测试工具·职场和发展·接口测试·postman
rengang661 小时前
04-深度学习的基本概念:涵盖深度学习中的关键术语和原理
人工智能·深度学习
杨成功1 小时前
大语言模型(LLM)学习笔记
人工智能·llm