代码随想录算法训练营day24|回溯理论基础、77.组合

回溯理论基础

带你学透回溯算法(理论篇)| 回溯法精讲!_哔哩哔哩_bilibili

回溯算法是一种试探性的算法,用于解决组合优化问题。这类问题通常涉及在给定的候选集中找出满足特定条件的所有解。回溯算法通过深度优先遍历的方式,探索决策树的所有可能分支,从而找出所有解,就树而言,我们很容易想到递归,递归和回溯是相辅相成的。

回溯法要解决的问题都能抽象成树形结构,也以此,回溯算法的基本思想是,从树的根节点开始,按某种顺序尝试所有可能的选择(例如,从左到右)。每做出一个选择,就生成一个新的节点,然后递归地继续进行选择。如果在某一点上发现当前的选择不满足条件(例如,超过了某个限制或违反了问题的规则),则回溯到上一个节点,并尝试其他选择。这个过程一直持续到找到所有解或遍历完所有可能性为止。因此,回溯法可以看作是枚举法的一种特殊化,在极端情况下,算法的搜索效率等于暴力枚举,即回溯法的时间复杂度较高。

回溯算法通常用于解决如下类型的问题:

  1. 组合问题 :找出所有可能的组合(无序),例如,八皇后问题(棋盘问题)、组合数问题等。
  2. 切割问题:给定字符串,查找切割方式。
  3. 子集问题:列一个集合的所有子集等。
  4. 排列问题:找出所有可能的排列(有序),例如,旅行商问题、电话号码字母组合问题等。
  5. 决策问题:找出满足特定条件的所有决策,例如,0-1背包问题、图的着色问题等。

回溯算法的关键组成部分包括:

  1. 路径:记录从根节点到当前节点的选择序列。
  2. 选择列表:当前节点可用的所有选择。
  3. 结束条件:确定何时应该结束递归,并返回结果。

回溯算法的优点是,它可以系统地找出所有可能的解,并且易于理解和实现。然而,它的缺点是,对于某些问题,它可能非常耗时,特别是当问题的解空间非常大时。

在实际应用中,回溯算法经常与其他算法策略结合使用,如剪枝(通过提前排除明显不满足条件的路径来减少搜索空间)等,以提高其效率。

回溯法三部曲(参考代码随想录)

复制代码
void backtracking(参数) {
    if (终止条件) {
        存放结果;
        return;
    }

    for (选择:本层集合中元素(树中节点孩子的数量就是集合的大小)) {
        处理节点;
        backtracking(路径,选择列表); // 递归
        回溯,撤销处理结果
    }
}

组合

回溯三部曲

1.确定函数参数和返回值

2.确定终止条件

3.单层递归逻辑

cpp 复制代码
class Solution {
public:
    // 存储所有可能的组合路径
    vector<vector<int>> paths;
    // 存储当前正在构建的路径
    vector<int> path;
    
    // 回溯函数
    void backtracking(int n, int k, int startindex) {
        // 如果当前路径长度等于k,说明找到了一个有效的组合
        if (path.size() == k) {
            // 将当前路径添加到所有可能的组合路径中
            paths.push_back(path);
            // 返回上一层递归
            return;
        }
        // 从startindex开始,尝试所有可能的数字
        for (int i = startindex; i <= n; i++) {
            // 将数字i添加到当前路径
            path.push_back(i);
            // 递归调用,尝试下一个数字
            backtracking(n, k, i + 1);
            // 回溯,撤销上一步的选择,尝试其他数字
            path.pop_back();
        }
    }

    // 主函数,用于获取所有可能的组合
    vector<vector<int>> combine(int n, int k) {
        // 从数字1开始回溯
        backtracking(n, k, 1);
        // 返回所有可能的组合路径
        return paths;
    }
};

对于每个组合,我们都需要深入到叶子节点来生成完整的组合,而每个组合有k个元素。在回溯的过程中,我们每次都选择或不选择一个元素,这样的选择有n-k+1次(因为一旦我们选择了k个元素,就不会再继续选择了)。因此,对于每个组合,我们有2^(n-k+1)种可能的选择。由于我们要生成所有C(n, k)个组合,每个组合都有2^(n-k+1)种选择,所以总的时间复杂度是O(C(n, k) * 2^(n-k+1))。

空间复杂度主要取决于递归栈的深度和存储组合的路径。递归栈的最大深度是k,因为我们需要选择k个元素。存储组合的路径也需要空间,每个组合需要k个元素的存储空间。因此,空间复杂度是O(k)。

相关推荐
格林威4 小时前
常规线扫描镜头有哪些类型?能做什么?
人工智能·深度学习·数码相机·算法·计算机视觉·视觉检测·工业镜头
程序员莫小特6 小时前
老题新解|大整数加法
数据结构·c++·算法
过往入尘土7 小时前
服务端与客户端的简单链接
人工智能·python·算法·pycharm·大模型
zycoder.8 小时前
力扣面试经典150题day1第一题(lc88),第二题(lc27)
算法·leetcode·面试
蒙奇D索大8 小时前
【数据结构】考研数据结构核心考点:二叉排序树(BST)全方位详解与代码实现
数据结构·笔记·学习·考研·算法·改行学it
智驱力人工智能8 小时前
工厂抽烟检测系统 智能化安全管控新方案 加油站吸烟检测技术 吸烟行为智能监测
人工智能·算法·安全·边缘计算·抽烟检测算法·工厂抽烟检测系统·吸烟监测
程序员爱钓鱼9 小时前
Go语言实战案例——进阶与部署篇:编写Makefile自动构建Go项目
后端·算法·go
_Power_Y9 小时前
Java面试常用算法api速刷
java·算法·面试
艾醒(AiXing-w)9 小时前
大模型面试题剖析:模型微调中冷启动与热启动的概念、阶段与实例解析
人工智能·深度学习·算法·语言模型·自然语言处理
天选之女wow10 小时前
【代码随想录算法训练营——Day32】动态规划——509.斐波那契数、70.爬楼梯、746.使用最小花费爬楼梯
算法·leetcode·动态规划