LMDeploy Windows 平台最佳实践

Windows 是全球范围内最流行的操作系统之一,许多企业和个人用户都在使用 Windows 系统。通过在 Windows 系统上支持 LLM 的推理,许多办公软件、聊天应用等都可以受益于 LLM 的技术,为用户提供更智能、更个性化的服务。LMDeploy 支持在 Windows 平台进行部署与使用,本文会从以下几个部分,介绍如何使用 LMDeploy 部署 internlm2-chat-1_8b 模型。

  • 环境配置
  • LMDeploy Chat CLI 工具
  • LMDeploy pipeline (python)
  • LMDeploy serving

环境配置

安装显卡驱动 & CUDA Toolkit

developer.nvidia.com/cuda-12-1-1...

成功安装后,打开 Powershell 后,环境变量 CUDA_PATH 不为空。

安装 LMDeploy

ini 复制代码
conda create -n lmdeploy python=3.10
conda activate lmdeploy
pip install lmdeploy --extra-index-url https://download.pytorch.org/whl/cu121

需要注意的是,--extra-index-url 不能省略,不然会安装 CPU 版本的 PyTorch

下载模型

perl 复制代码
mkdir D:\workspace
cd D:\workspace
huggingface-cli download --resume-download --cache-dir cache --local-dir-use-symlinks False --local-dir internlm2-chat-1_8b internlm/internlm2-chat-1_8b

命令行 CLI

LMDeploy 提供命令行工具,可以非常方便地在 Powershell 进行对话,相关命令是:

复制代码
lmdeploy chat .\internlm2-chat-1_8b\

LMDeploy 会根据 $env:CUDA_PATH 添加 CUDA Runtime 的目录,并在程序的开头会打印目录。如果没有下图红线的部分,需要检查显卡驱动以及 CUDA Toolkit 是否正确安装。

运行结果如下:

pipeline

LMDeploy 提供了 Python api,可以方便集成到其他的工具中,相关的用法如下。

java 复制代码
from lmdeploy import pipeline
pipe = pipeline('internlm2-chat-1_8b')
pipe('上海有什么景点')

运行结果如下:

pipeline 启动时参数设置可参考 lmdeploy.readthedocs.io/zh-cn/lates...

服务化

LMDeploy 支持把模型一键封装为服务,对外提供的 RESTful API 兼容 openai 的接口。以下为使用方式:

服务端:

复制代码
lmdeploy serve api_server .\internlm2-chat-1_8b\

更多使用方式可参考 lmdeploy.readthedocs.io/en/latest/s...

客户端:

ini 复制代码
from openai import OpenAI
client = OpenAI(
    api_key='YOUR_API_KEY',
    base_url="http://127.0.0.1:23333/v1"
)
model_name = client.models.list().data[0].id
response = client.chat.completions.create(
  model=model_name,
  messages=[
    {"role": "user", "content": "上海有什么著名景点"},
  ],
    temperature=0.8,
    top_p=0.8
)
print(response)

FAQ:

Q: 如何使用 LMDeploy cuda11 的版本?

A: 安装 CUDA Toolkit >= 11.3 并确保显卡驱动的版本支持 CUDA Toolkit,之后可以从 LMDeploy Release 页面 找到使用 CUDA11 编译的 whl 包,以 python3.10, LMDeploy v0.4.2 为例,安装方式为:

bash 复制代码
pip install https://github.com/InternLM/lmdeploy/releases/download/v0.4.2/lmdeploy-0.4.2+cu118-cp310-cp310-win_amd64.whl --extra-index-url https://download.pytorch.org/whl/cu118

Q:模型过大,显存不够加载模型怎么办?

A:可以考虑把模型权重量化为 4bit,然后再部署。模型大小的快速估算方式为,1B 大小的模型,其权重(16bit)大约需要 2G 的显存。量化为 4bit 后,大约只需 0.5G 显存。7B 模型,4bit 量化后,约 3.5 G。具体方法请参考文档:lmdeploy.readthedocs.io/en/latest/q...

Q:如何使用多卡推理?

A:对于在 Windows 宿主机上直接使用 LMDeploy 的方式,由于 NVIDIA 并未提供 Windows 平台的 NCCL 运行时,所以不支持多卡推理。

相关推荐
lzptouch1 分钟前
数据预处理(音频/图像/视频/文字)及多模态统一大模型输入方案
人工智能·音视频
星期天要睡觉8 分钟前
深度学习——循环神经网络(RNN)
人工智能·python·rnn·深度学习·神经网络
jieba1213815 分钟前
CAA机器学习
人工智能
TextIn智能文档云平台27 分钟前
LLM 文档处理:如何让 AI 更好地理解中文 PDF 中的复杂格式?
人工智能·pdf
Blossom.11829 分钟前
把AI“撒”进农田:基于极值量化与状态机的1KB边缘灌溉决策树
人工智能·python·深度学习·算法·目标检测·决策树·机器学习
takashi_void40 分钟前
本地实现斯坦福小镇(利用大语言模型使虚拟角色自主发展剧情)类似项目“Microverse”
人工智能·语言模型·自然语言处理·godot·游戏程序·斯坦福小镇
zxsz_com_cn1 小时前
设备健康管理大数据平台:工业智能化的核心数据引擎
运维·人工智能
算家计算1 小时前
破5亿用户!国产AI模型成功逆袭,成为AI普及浪潮主角
人工智能·开源·资讯
Jolie_Liang1 小时前
国内金融领域元宇宙金融特殊需求与技术挑战研究报告
人工智能·元宇宙
算家计算1 小时前
SAIL-VL2本地部署教程:2B/8B参数媲美大规模模型,为轻量级设备量身打造的多模态大脑
人工智能·开源·aigc