时间复杂度和空间复杂度

1.算法效率

算法效率是衡量一个算法好坏的标准,算法效率又分为时间效率和空间效率,时间效率又叫时间复杂度,空间效率又叫空间复杂度。


时间复杂度:是衡量一个算法的运行时间

空间复杂度:是衡量一个算法所需要的额外空间

2.时间复杂度

时间复杂度:算法中基本操作的执行次数

2.1大O渐进表示法

计算复杂度时,我们不需要计算精准的执行次数,用O(执行次数表示复杂度)

大O的渐进表示法规则:

1、用常数1取代运行时间中的所有加法常数。

2、在修改后的运行次数函数中,只保留最高阶项。

3、如果最高阶项存在且不是1,则去除与这个项目相乘的常数。得到的结果就是大O阶。


大O的渐进表示法去掉了那些对结果影响不大的项,简洁明了的表示出了执行次数。

在实际中一般情况关注的是算法的最坏运行情况,所以数组中搜索数据时间复杂度为O(N)

2.2计算时间复杂度

1.O(N)的时间复杂度:

复制代码
  public static void print(int n){
        for (int i = 0; i <n ; i++) {
            System.out.println(i);
        }
    }

2.O(N^2)的时间复杂度:

复制代码
void bubbleSort(int[] array) {
    for (int end = array.length; end > 0; end--) {
        boolean sorted = true;
        for (int i = 1; i < end; i++) {
            if (array[i - 1] > array[i]) {
                Swap(array, i - 1, i);
                sorted = false;
           }
       }
 
        if (sorted == true) {
            break;
       }
   }
}

3.O(N+M)的时间复杂度:

复制代码
  public static void print(int n,int m){
        for (int i = 0; i <n ; i++) {
            System.out.println(i);
        }
        for (int i = 0; i <m ; i++) {
            System.out.println(i);
        }

    }

4.O(2^N)的时间复杂度:

复制代码
int fibonacci(int N) {
 return N < 2 ? N : fibonacci(N-1)+fibonacci(N-2);
}

5.O(logN)的时间复杂度:

二分查找

复制代码
int binarySearch(int[] array, int value) {
    int begin = 0;
    int end = array.length - 1;
    while (begin <= end) {
        int mid = begin + ((end-begin) / 2);
        if (array[mid] < value)
            begin = mid + 1;
        else if (array[mid] > value)
            end = mid - 1;
        else
            return mid;
   }
 
    return -1;
}

3.空间复杂度

空间复杂度是对一个算法在运行过程中临时占用存储空间大小的量度

同时也使用大O渐进表示法

大部分算法的空间复杂度都是O(1)

O(1)的空间复杂度:

复制代码
void bubbleSort(int[] array) {
    for (int end = array.length; end > 0; end--) {
        boolean sorted = true;
        for (int i = 1; i < end; i++) {
            if (array[i - 1] > array[i]) {
                Swap(array, i - 1, i);
                sorted = false;
           }
       }
 
        if (sorted == true) {
            break;
       }

O(N)的空间复杂度:

复制代码
int[] fibonacci(int n) {
    long[] fibArray = new long[n + 1];
    fibArray[0] = 0;
    fibArray[1] = 1;
    for (int i = 2; i <= n ; i++) {
    fibArray[i] = fibArray[i - 1] + fibArray [i - 2];
   }
 
    return fibArray;
}
相关推荐
lifallen6 小时前
Paimon LSM Tree Compaction 策略
java·大数据·数据结构·数据库·算法·lsm-tree
秋说11 小时前
【PTA数据结构 | C语言版】线性表循环右移
c语言·数据结构·算法
minji...14 小时前
数据结构 算法复杂度(1)
c语言·开发语言·数据结构·算法
black_blank15 小时前
st表 && csp37 第四题 集体锻炼
java·数据结构·算法
我爱Jack15 小时前
Java List 使用详解:从入门到精通
java·开发语言·数据结构
秋说15 小时前
【PTA数据结构 | C语言版】在顺序表 list 的第 i 个位置上插入元素 x
c语言·数据结构·list
楼田莉子16 小时前
数据学习之队列
c语言·开发语言·数据结构·学习·算法
秋说16 小时前
【PTA数据结构 | C语言版】返回单链表 list 中第 i 个元素值
c语言·数据结构·list
雾里看山16 小时前
数据结构之队列
数据结构
双叶83617 小时前
(C++)任务管理系统(正式版)(迭代器)(list列表基础教程)(STL基础知识)
c语言·开发语言·数据结构·c++·list