时间复杂度和空间复杂度

1.算法效率

算法效率是衡量一个算法好坏的标准,算法效率又分为时间效率和空间效率,时间效率又叫时间复杂度,空间效率又叫空间复杂度。


时间复杂度:是衡量一个算法的运行时间

空间复杂度:是衡量一个算法所需要的额外空间

2.时间复杂度

时间复杂度:算法中基本操作的执行次数

2.1大O渐进表示法

计算复杂度时,我们不需要计算精准的执行次数,用O(执行次数表示复杂度)

大O的渐进表示法规则:

1、用常数1取代运行时间中的所有加法常数。

2、在修改后的运行次数函数中,只保留最高阶项。

3、如果最高阶项存在且不是1,则去除与这个项目相乘的常数。得到的结果就是大O阶。


大O的渐进表示法去掉了那些对结果影响不大的项,简洁明了的表示出了执行次数。

在实际中一般情况关注的是算法的最坏运行情况,所以数组中搜索数据时间复杂度为O(N)

2.2计算时间复杂度

1.O(N)的时间复杂度:

复制代码
  public static void print(int n){
        for (int i = 0; i <n ; i++) {
            System.out.println(i);
        }
    }

2.O(N^2)的时间复杂度:

复制代码
void bubbleSort(int[] array) {
    for (int end = array.length; end > 0; end--) {
        boolean sorted = true;
        for (int i = 1; i < end; i++) {
            if (array[i - 1] > array[i]) {
                Swap(array, i - 1, i);
                sorted = false;
           }
       }
 
        if (sorted == true) {
            break;
       }
   }
}

3.O(N+M)的时间复杂度:

复制代码
  public static void print(int n,int m){
        for (int i = 0; i <n ; i++) {
            System.out.println(i);
        }
        for (int i = 0; i <m ; i++) {
            System.out.println(i);
        }

    }

4.O(2^N)的时间复杂度:

复制代码
int fibonacci(int N) {
 return N < 2 ? N : fibonacci(N-1)+fibonacci(N-2);
}

5.O(logN)的时间复杂度:

二分查找

复制代码
int binarySearch(int[] array, int value) {
    int begin = 0;
    int end = array.length - 1;
    while (begin <= end) {
        int mid = begin + ((end-begin) / 2);
        if (array[mid] < value)
            begin = mid + 1;
        else if (array[mid] > value)
            end = mid - 1;
        else
            return mid;
   }
 
    return -1;
}

3.空间复杂度

空间复杂度是对一个算法在运行过程中临时占用存储空间大小的量度

同时也使用大O渐进表示法

大部分算法的空间复杂度都是O(1)

O(1)的空间复杂度:

复制代码
void bubbleSort(int[] array) {
    for (int end = array.length; end > 0; end--) {
        boolean sorted = true;
        for (int i = 1; i < end; i++) {
            if (array[i - 1] > array[i]) {
                Swap(array, i - 1, i);
                sorted = false;
           }
       }
 
        if (sorted == true) {
            break;
       }

O(N)的空间复杂度:

复制代码
int[] fibonacci(int n) {
    long[] fibArray = new long[n + 1];
    fibArray[0] = 0;
    fibArray[1] = 1;
    for (int i = 2; i <= n ; i++) {
    fibArray[i] = fibArray[i - 1] + fibArray [i - 2];
   }
 
    return fibArray;
}
相关推荐
zzzsde1 小时前
【数据结构】强化训练:从基础到入门到进阶(1)
数据结构
奔跑吧 android1 小时前
【linux kernel 常用数据结构和设计模式】【数据结构 3】【模拟input子系统input_dev和input_handler之间的多对多关系】
linux·数据结构·input·kernel·input_dev·input_handler·input_handle
微露清风2 小时前
系统性学习数据结构-第三讲-栈和队列
java·数据结构·学习
lifallen3 小时前
Kafka 内存池MemoryPool 设计
数据结构·kafka·apache
一只鱼^_4 小时前
牛客周赛 Round 108
数据结构·c++·算法·动态规划·图论·广度优先·推荐算法
红豆怪怪5 小时前
[LeetCode 热题 100] 32. 最长有效括号
数据结构·python·算法·leetcode·动态规划·代理模式
AI 嗯啦5 小时前
计算机的排序方法
数据结构·算法·排序算法
_Coin_-6 小时前
算法训练营DAY58 第十一章:图论part08
数据结构·算法·图论
阿方.9186 小时前
《数据结构全解析:栈(数组实现)》
java·开发语言·数据结构
小欣加油7 小时前
leetcode 912 排序数组(归并排序)
数据结构·c++·算法·leetcode·排序算法