AcWing 843. n-皇后问题——算法基础课题解

AcWing 843. n-皇后问题

题目描述

𝑛−皇后问题是指将 𝑛 个皇后放在 𝑛×𝑛 的国际象棋棋盘上,使得皇后不能相互攻击到,即任意两个皇后都不能处于同一行、同一列或同一斜线上。

现在给定整数 𝑛,请你输出所有的满足条件的棋子摆法。

输入格式

共一行,包含整数 𝑛。

输出格式

每个解决方案占 𝑛 行,每行输出一个长度为 𝑛 的字符串,用来表示完整的棋盘状态。

其中 . 表示某一个位置的方格状态为空,Q 表示某一个位置的方格上摆着皇后。

每个方案输出完成后,输出一个空行。

注意:行末不能有多余空格。

输出方案的顺序任意,只要不重复且没有遗漏即可。

数据范围

1≤𝑛≤9

输入样例

cpp 复制代码
4

输出样例

cpp 复制代码
.Q..
...Q
Q...
..Q.

..Q.
Q...
...Q
.Q..
    

C++

cpp 复制代码
#include <iostream>

using namespace std;

const int N = 20;

int n;
char g[N][N];
bool col[N], dg[N * 2], udg[N * 2];

void dfs(int u) {
    if (u == n) {
        for (int i = 0; i < n; i++) puts(g[i]);
        puts("");
        return;
    }

    for (int i = 0; i < n; i++)
        if (!col[i] && !dg[n + u - i] && !udg[u + i]) {
            g[u][i] = 'Q';
            col[i] = dg[n + u - i] = udg[u + i] = true;
            dfs(u + 1);
            col[i] = dg[n + u - i] = udg[u + i] = false;
            g[u][i] = '.';
        }
}

int main() {
    cin >> n;
    for (int i = 0; i < n; i++)
        for (int j = 0; j < n; j++)
            g[i][j] = '.';

    dfs(0);

    return 0;
}

为了实现这一点,我们使用了三个布尔数组:coldgudg 来分别标记列、主对角线和副对角线上是否有皇后。

具体来说:

  • col[i] 表示第 i 列是否有皇后。
  • dg[i] 表示主对角线上是否有皇后。
  • udg[i] 表示副对角线上是否有皇后。

主对角线(dg)

主对角线是从左上到右下的对角线。对于一个棋盘上的位置 (x, y),在主对角线上,所有位置 (x, y) 满足 x - y 是相同的。为了防止负数索引,我们调整这个索引值为 n + (x - y),其中 n 是棋盘的大小。

因此,对于位置 (x, y),在主对角线上使用的索引是 dg[n + x - y]。例如,对于一个 8x8 的棋盘(即 n=8),位置 (0, 0)dg 索引是 8 + 0 - 0 = 8,位置 (1, 0)dg 索引是 8 + 1 - 0 = 9

副对角线(udg)

副对角线是从右上到左下的对角线。对于一个棋盘上的位置 (x, y),在副对角线上,所有位置 (x, y) 满足 x + y 是相同的。

因此,对于位置 (x, y),在副对角线上使用的索引是 udg[x + y]。例如,对于一个 8x8 的棋盘,位置 (0, 7)udg 索引是 0 + 7 = 7,位置 (1, 6)udg 索引是 1 + 6 = 7

Go

go 复制代码
package main

import (
	"bufio"
	"fmt"
	"os"
)

const N = 20

var (
	n   int
	g   [N][N]byte
	col [N]bool
	dg  [N * 2]bool
	udg [N * 2]bool
	out *bufio.Writer
)

func dfs(u int) {
	if u == n {
		for i := 0; i < n; i++ {
			out.Write(g[i][:n])
			out.WriteByte('\n')
		}
		out.WriteByte('\n')
		return
	}

	for i := 0; i < n; i++ {
		if !col[i] && !dg[n+u-i] && !udg[u+i] {
			{
				g[u][i] = 'Q'
				col[i] = true
				dg[n+u-i] = true
				udg[u+i] = true
			}
			dfs(u + 1)
			{
				col[i] = false
				dg[n+u-i] = false
				udg[u+i] = false
				g[u][i] = '.'
			}
		}
	}
}

func main() {
	in := bufio.NewReader(os.Stdin)
	out = bufio.NewWriter(os.Stdout)
	defer out.Flush()

	fmt.Fscan(in, &n)
	for i := 0; i < n; i++ {
		for j := 0; j < n; j++ {
			g[i][j] = '.'
		}
	}

	dfs(0)
}
相关推荐
带多刺的玫瑰38 分钟前
Leecode刷题C语言之统计不是特殊数字的数字数量
java·c语言·算法
爱敲代码的憨仔40 分钟前
《线性代数的本质》
线性代数·算法·决策树
陪学42 分钟前
百度遭初创企业指控抄袭,维权还是碰瓷?
人工智能·百度·面试·职场和发展·产品运营
yigan_Eins1 小时前
【数论】莫比乌斯函数及其反演
c++·经验分享·算法
阿史大杯茶1 小时前
AtCoder Beginner Contest 381(ABCDEF 题)视频讲解
数据结构·c++·算法
დ旧言~2 小时前
【高阶数据结构】图论
算法·深度优先·广度优先·宽度优先·推荐算法
张彦峰ZYF2 小时前
投资策略规划最优决策分析
分布式·算法·金融
The_Ticker2 小时前
CFD平台如何接入实时行情源
java·大数据·数据库·人工智能·算法·区块链·软件工程
大数据编程之光2 小时前
Flink Standalone集群模式安装部署全攻略
java·大数据·开发语言·面试·flink
爪哇学长3 小时前
双指针算法详解:原理、应用场景及代码示例
java·数据结构·算法