五分钟速览MySQL的索引结构


前言

和一个同事讨论MySQL 数据量达到多少会出现查询速度显著下降,两个半吊子 好像知道一点但是又不太说得清楚,所以本文针对MySQL的索引结构这个经典八股,做一下整理。

正文

一. 哈希索引

哈希索引 底层使用的数据结构为哈希表,在MySQL 中只有Memory引擎支持哈希索引。哈希索引可以用下图进行示意。

在发生哈希冲突时,是基于拉链法 解决冲突。哈希索引最大的缺点就是不支持范围查询

二. B树和B+树

InnoDB 引擎使用的索引的底层数据结构为B+树 ,在分析B+树 前,先对B树 进行分析。B树Balanced Tree ),全称为多路平衡查找树 ,一棵B树可以表示如下。

B树的特点可以概括如下。

  1. 所有数据分布在整个B树中;
  2. 任何一条数据会出现仅会出现在一个节点上;
  3. 搜索可能在非叶子节点上就结束。

现在开始分析B+树 ,一棵B+树可以表示如下。

B+树 相较于B树,其优势如下。

  1. B+树的扫表能力更强。做全表扫描时,只需要在叶子节点顺序的访问,不需要遍历树;
  2. 磁盘IO 能力更强。深度可以比B树更低;
  3. 排序能力更强。基于叶子节点上的双向指针实现;
  4. 效率更稳定。IO次数是稳定的。

三. MyISAM索引实现

MyISAM 使用B+树作为索引结构,并且叶子节点存储的是数据的地址。

MyISAM主键索引结构如下所示。

MyISAM主键索引辅助索引 在结构上没有区别,只不过主键索引 要求索引值唯一 ,而辅助索引不要求索引值唯一 。假如在字段2上建立一个辅助索引,则图示如下。

四. InnoDB索引实现

InnoDB 使用B+树 作为索引结构,但是具体实现与MyISAM截然不同。

InnoDB 的数据文件就是主键索引文件(MyISAM 的数据文件和索引文件是分开的,索引文件中只存储数据的地址 )。在InnoDB 中,表的数据文件本身就是按照B+树组织的一个主键索引结构,树的叶子节点保存着完整的数据。

InnoDB中的主键索引示意图如下。

因为InnoDB 的数据文件要按照主键聚族 ,所以InnoDB 引擎要求表必须有主键MyISAM 引擎的表可以没有主键)。

InnoDB中的辅助索引示意图如下。

InnoDB的辅助索引中的叶子节点存储的是对应数据的主键,使用辅助索引时,首先通过辅助索引获得数据的主键,然后再通过主键索引获得数据。

五. B+树存储数据的计算

B+树 中,每个节点对应一页(page ),一页大小为16KB 。假如非叶子节点上一个键值指针 的大小为16 字节,叶子节点上一条数据大小为1.6KB ,那么一个深度为2B+树存储的数据量可以由下图进行说明。

那么如果存储的数据量在1千万 以内,则每次查询数据时的IO 次数会稳定为3次。


总结不易,如果本文对你有帮助,烦请点赞,收藏加关注,谢谢帅气漂亮的你。

相关推荐
q***42826 小时前
SpringBoot Maven快速上手
spring boot·后端·maven
Victor3566 小时前
Redis(153)Redis的网络使用如何监控?
后端
码一行6 小时前
Eino AI 实战:解析 PDF 文件 & 实现 MCP Server
后端·go
Victor3567 小时前
Redis(152) Redis的CPU使用如何监控?
后端
P***84397 小时前
解决Spring Boot中Druid连接池“discard long time none received connection“警告
spring boot·后端·oracle
雨中散步撒哈拉7 小时前
17、做中学 | 初三下期 Golang文件操作
开发语言·后端·golang
倚肆7 小时前
Spring Boot CORS 配置详解:CorsConfigurationSource 全面指南
java·spring boot·后端
databook7 小时前
告别盲人摸象,数据分析的抽样方法总结
后端·python·数据分析
v***44677 小时前
springboot之集成Elasticsearch
spring boot·后端·elasticsearch
q***72197 小时前
Spring Boot(快速上手)
java·spring boot·后端