使用Quartznet和Pytorch实现语音文字转换(speech-to-text)

使用QuartzNet和Pytorch实现语音文字转换(speech-to-text)

QuartzNet介绍

QuartzNet是Nvidia推出的一个轻量级的端到端语音识别模型,即使在5x15版本上仅包含18.9M个参数,在LibriSpeech-dev其他数据集上也能有超过95%的准确率。因此,凭借高吞吐量和高精度,QuartzNet可以提供帧级语音到文本推理,相比于大多数GB级别的ASR模型,QuartzNet适用于存储和计算能力有限的边缘设备上使用。

QuratzNet预训练模型

Nvidia提供了QuartzNet15x5的预训练NeMo模型,在 8xV100 GPU上以Apex/Amp O1优化级别进行训练。训练使用了LibriSpeech和Mozilla的EN Common Voice进行训练。在不使用其它语言模型的情况下,仅使用贪婪解码器,该模型在LibriSpeech 测试的WER(word error rate)为4.19%,在其他测试中的WER为 10.98%。

预训练模型使用

为了更好的将QuartzNet15x5模型应用在多种类、跨平台的应用上,我们将模型迁移到了Pytorch上,并将原来的代码尽可能解耦,以方便不同领域简单能够复用。以下为Demo的使用教程:

  1. 将代码克隆至本地:

    git clone https://github.com/youjunl/Quartznet-pytorch.git

  2. 进入到代码文件夹:

    cd Quartznet-pytorch

  3. 安装Python依赖:

    pip install -r requirements.txt

  4. 运行Demo,这里我们将audio文件夹下的一段demo音频转化为文本:
    python try_model.py

  5. 输出结果:
    as i approached the city i heard bells ringing and a little later i found the street a stir with throngs of well dressed people in family groups winding their way thither and thither

相关推荐
FriendshipT2 分钟前
目标检测:使用自己的数据集微调DEIMv2进行物体检测
人工智能·pytorch·python·目标检测·计算机视觉
海森大数据6 分钟前
三步破局:一致性轨迹强化学习开启扩散语言模型“又快又好”推理新时代
人工智能·语言模型·自然语言处理
Tencent_TCB8 分钟前
云开发CloudBase AI+实战:快速搭建AI小程序全流程指南
人工智能·ai·小程序·ai编程·云开发
Sunhen_Qiletian10 分钟前
基于OpenCV与Python的身份证号码识别案例详解
人工智能·opencv·计算机视觉
AustinCyy16 分钟前
【论文笔记】Introduction to Explainable AI
论文阅读·人工智能
平谷一勺27 分钟前
数据清洗-缺失值的处理
python·数据分析
岁月宁静33 分钟前
在富文本编辑器中封装实用的 AI 写作助手功能
前端·vue.js·人工智能
末世灯光35 分钟前
时间序列入门第一问:它和普通数据有什么不一样?(附 3 类典型案例)
人工智能·python·机器学习·时序数据
开心-开心急了37 分钟前
Flask入门教程——李辉 第一、二章关键知识梳理(更新一次)
后端·python·flask
锦***林39 分钟前
用 Python 写一个自动化办公小助手
开发语言·python·自动化