使用Quartznet和Pytorch实现语音文字转换(speech-to-text)

使用QuartzNet和Pytorch实现语音文字转换(speech-to-text)

QuartzNet介绍

QuartzNet是Nvidia推出的一个轻量级的端到端语音识别模型,即使在5x15版本上仅包含18.9M个参数,在LibriSpeech-dev其他数据集上也能有超过95%的准确率。因此,凭借高吞吐量和高精度,QuartzNet可以提供帧级语音到文本推理,相比于大多数GB级别的ASR模型,QuartzNet适用于存储和计算能力有限的边缘设备上使用。

QuratzNet预训练模型

Nvidia提供了QuartzNet15x5的预训练NeMo模型,在 8xV100 GPU上以Apex/Amp O1优化级别进行训练。训练使用了LibriSpeech和Mozilla的EN Common Voice进行训练。在不使用其它语言模型的情况下,仅使用贪婪解码器,该模型在LibriSpeech 测试的WER(word error rate)为4.19%,在其他测试中的WER为 10.98%。

预训练模型使用

为了更好的将QuartzNet15x5模型应用在多种类、跨平台的应用上,我们将模型迁移到了Pytorch上,并将原来的代码尽可能解耦,以方便不同领域简单能够复用。以下为Demo的使用教程:

  1. 将代码克隆至本地:

    git clone https://github.com/youjunl/Quartznet-pytorch.git

  2. 进入到代码文件夹:

    cd Quartznet-pytorch

  3. 安装Python依赖:

    pip install -r requirements.txt

  4. 运行Demo,这里我们将audio文件夹下的一段demo音频转化为文本:
    python try_model.py

  5. 输出结果:
    as i approached the city i heard bells ringing and a little later i found the street a stir with throngs of well dressed people in family groups winding their way thither and thither

相关推荐
人工智能AI技术5 小时前
10亿美元合作启发:AIGC正版IP应用开发,迪士尼+OpenAI技术拆解
人工智能
光羽隹衡5 小时前
深度学习——卷积神经网络实现手写数字识别
人工智能·深度学习·cnn
莫非王土也非王臣5 小时前
深度学习之对比学习
人工智能·深度学习·学习
AI_56785 小时前
Selenium+Python可通过 元素定位→操作模拟→断言验证 三步实现Web自动化测试
服务器·人工智能·python
冰西瓜6005 小时前
国科大高级人工智能期末复习(四)联结主义(下)——深度学习
人工智能·深度学习
蒜香拿铁5 小时前
【第三章】python算数运算符
python
檐下翻书1735 小时前
世界模型:AI理解物理空间的关键一步
人工智能
2013092416276 小时前
1968年 Hart, Nilsson, Raphael 《最小成本路径启发式确定的形式基础》A* 算法深度研究报告
人工智能·算法
InterestOriented6 小时前
破解银发学习痛点 兴趣岛 “普惠 + 品质” 模式打造积极老龄化范本
大数据·人工智能·学习
Mark_Aussie6 小时前
ADALog 日志异常检测
人工智能