港中文&斯坦福提出SD加速模型PCM,一步即可生成图像和视频,可直接与SD1.5,SDXL,AnimateLCM结合!

又有新的SD加速模型可以用了,PCM解决了原来LCM模型的各种问题。并且对 AnimateLCM 也做了优化,用PCM直接生成动画也可以保证质量了。 PCM从这三个角度说明了LCM的设计空间是有限的并很好地解决了这些限制。

PCM主要改善了三个LCM原有的问题:

  • LCM 只能接受小于 2 的 CFG 规模。较大的值会导致图像过度曝光。此外,LCM 对负面提示不敏感。

  • LCM 在不同的推理步骤中无法产生一致的结果。当推理步骤过大或过小时,其输出的结果会变得模糊。

  • LCM 的损失项无法实现分布一致性,在低推理步骤下会产生质量较差的结果。

相关链接

论文:https://arxiv.org/abs/2405.18407

视频:https://www.youtube.com/watch?v=B4ieLnS4MTY

代码:https://github.com/G-U-N/Phased-Consistency-Model

论文阅读

阶段性一致性模型:朝着稳定、快速的图像和视频生成方向发展

动机

一致性模型(CM)是一种具有高质量和快速生成特性的新型生成模型。潜在一致性模型(LCM)试图将其扩展到文本条件下的高分辨率生成的潜在空间。然而,其结果并不令人愉快。在这项工作中,我们表明了当前LCM的设计在三个方面存在缺陷。

我们提出了相位一致性模型~(PCM),推广了LCM的设计空间,很好地解决了这些局限性。在训练和推理两方面提出了创新策略,以提高生成质量。包括1步、2步、4步、8步、16步在内的大量实验结果以及广泛应用的稳定扩散和稳定扩散XL基础模型验证了PCM的进步。

潜在一致性模型有三个主要的局限性。

  • LCM只接受CFG小于2的标度。较大的值会导致过度曝光。LCM对负提示不敏感。

  • LCM在不同的推理步骤下不能得到一致的结果。当步长过大或过小时,其结果是模糊的。

  • LCM的损失项不能达到分布一致性,在低阶跃状态下产生较差的结果。

在这项工作中,我们调查了这些限制背后的原因,并提出了PCM,它很好地解决了所有这些限制。

PCM与以往方法质量比较

由PCM一步生成的图像

SD1.5+PCM

由PCM一步生成的图像

SDXL+PCM

文字转视频

与AnimateLCM在低步进模式下的视频生成质量比较。模型可以在两个步骤中生成高质量的视频。

结论

尽管可以在几个步骤中生成高质量的图像和视频,但我们发现当步数很低,特别是只有一步,生成质量不稳定。模型可能产生结构错误或图像模糊。

幸运的是,我们发现这种现象可以通过多步细化来缓解。总之,在本文中,我们观察到了缺陷 在文本条件控制下使用一致性模型生成高分辨率潜在空间。本文从三个层面对这些缺陷进行了总结,分析了缺陷产生的原因,并概括了缺陷的设计框架来解决这些缺陷。

相关推荐
中杯可乐多加冰12 小时前
深度解析文心大模型X1.1:智能涌现与技术革新
人工智能
用户51914958484512 小时前
揭秘LedgerCTF的AES白盒挑战:逆向工程与密码学分析
人工智能·aigc
用户51914958484512 小时前
SonicWall防火墙安全态势深度分析:固件解密与漏洞洞察
人工智能·aigc
海森大数据12 小时前
微软发布AI Agent五大可观测性实践,专治智能体“盲跑”难题
人工智能·microsoft
Christo312 小时前
TFS-2003《A Contribution to Convergence Theory of Fuzzy c-Means and Derivatives》
人工智能·算法·机器学习
qq_5088234012 小时前
金融量化指标--4Sharpe夏普比率
人工智能
沧海一粟青草喂马12 小时前
对口型视频怎么制作?从脚本到成片的全流程解析
aigc
TMT星球12 小时前
中国AI云市场报告:阿里云份额达35.8%,高于2至4名总和
人工智能·阿里云·云计算
nenchoumi311912 小时前
全网首发!Realsense 全新 D555 相机开箱记录与 D435i、L515、D456 横向测评!
数码相机·计算机视觉·机器人·ros·realsense
Yingjun Mo12 小时前
1. 统计推断-ALMOND收敛性分析
人工智能·算法·机器学习