分布式数据库架构:从单实例到分布式,开发人员需及早掌握?

现在互联网应用已经普及,数据量不断增大。对淘宝、美团、百度等互联网业务来说,传统单实例数据库很难支撑其性能和存储的要求,所以分布式架构得到了很大发展。而开发人员、项目经理,一定要认识到数据库技术正在经历一场较大的变革,及早掌握好分布式架构设计,帮助公司从古老的单实例架构迁移到分布式架构,对自己在职场的竞争力来说,大有益处。

一、什么是分布式数据库?

Wiki 官方对分布式数据库的定义为:

A distributed database is a database in which data is stored across different physical locations. It may be stored in multiple computers located in the same physical location (e.g. a data centre); or maybe dispersed over a network of interconnected computers.

从定义来看,分布式数据库是一种把数据分散存储在不同物理位置的数据库

对比之前的数据库,数据都是存放在一个实例对应的物理存储上,而在分布式数据库中,数据将存放在不同的数据库实例上。 从图中可以看到,在分布式数据库下,分布式数据库本身分为计算层、元数据层和存储层:

  • 计算层就是之前单机数据库中的 SQL 层,用来对数据访问进行权限检查、路由访问,以及对计算结果等操作。

  • 元数据层记录了分布式数据库集群下有多少个存储节点,对应 IP、端口等元数据信息是多少。当分布式数据库的计算层启动时,会先访问元数据层,获取所有集群信息,才能正确进行 SQL 的解析和路由等工作。另外,因为元数据信息存放在元数据层,那么分布式数据库的计算层可以有多个,用于实现性能的扩展。

  • 存储层用来存放数据,但存储层要和计算层在同一台服务器上,甚至不求在同一个进程中。

分布式数据库的优势是把数据打散到不同的服务器上,这种横向扩展的 Scale Out 能力,能解决单机数据库的性能与存储瓶颈。从理论上来看,分布式数据库的性能可以随着计算层和存储层的扩展,做到性能的线性提升。

从可用性的角度看,如果存储层发生宕机,那么只会影响 1/N 的数据,N 取决于数据被打散到多少台服务器上。所以,分布式数据库的可用性对比单机会有很大提升,单机数据库要实现99.999% 的可用性或许很难,但是分布式数据库就容易多了。

当然,分布式数据库也存在缺点:正因为数据被打散了,分布式数据库会引入很多新问题,比如自增实现、索引设计、分布式事务等。

二、MySQL分布式架构

在看MySQL分布式架构前,我们先来看一下单机的MySQL架构:

原先客户端是通过 MySQL 通信协议访问 MySQL 数据库,MySQL 数据库会通过高可用技术做多副本,当发生宕机进行切换。

对于MySQL分布式架构,它的整体架构大致如下:

从图中可以看到,这时数据将打散存储在下方各个 MySQL 实例中,每份数据叫"分片(Shard)"。 在分布式 MySQL 架构下,客户端不再是访问 MySQL 数据库本身,而是访问一个分布式中间件。

这个分布式中间件的通信协议依然采用 MySQL 通信协议(因为原先客户端是如何访问的MySQL 的,现在就如何访问分布式中间件)。分布式中间件会根据元数据信息,自动将用户请求路由到下面的 MySQL 分片中,从而将存储存取到指定的节点。

另外,分布式 MySQL 数据库架构的每一层都要由高可用,保证分布式数据库架构的高可用性。

对于上层的分布式中间件,是可以平行扩展的:即用户可以访问多个分布式中间件,如果其中一个中间件发生宕机,那么直接剔除即可。

因为分布式中间件是无状态的,数据保存在元数据服务中,它的高可用设计比较容易。

对于元数据来说,虽然它的数据量不大,但数据非常关键,一旦宕机则可能导致中间件无法工作,所以,元数据要通过副本技术保障高可用。

最后,每个分片存储本身都有副本,通过我们之前了解到的高可用技术,保证分片的可用性。也就是说,如果分片 1 的 MySQL 发生宕机,分片 1 的从服务器会接替原先的 MySQL 主服务器,继续提供服务。

但由于使用了分布式架构,那么即使分片 1 发生宕机,需要 60 秒的时间恢复,这段时间对于业务的访问来说,只影响了 1/N 的数据请求。

可以看到,分布式 MySQL 数据库架构实现了计算层与存储层的分离,每一层都可以进行 Scale Out 平行扩展,每一层又通过高可用技术,保证了计算层与存储层的连续性,大大提升了MySQL 数据库的性能和可靠性,为海量互联网业务服务打下坚实的基础。

下一篇,我们再来看一下,在分布式架构下,如何合理的将数据分片
文章将持续更新,欢迎关注公众号:服务端技术精选。欢迎点赞、关注、转发

相关推荐
听封8 分钟前
✨ 索引有哪些缺点以及具体有哪些索引类型
数据库·mysql
python资深爱好者16 分钟前
什么容错性以及Spark Streaming如何保证容错性
大数据·分布式·spark
ChinaRainbowSea28 分钟前
1. Linux下 MySQL 的详细安装与使用
linux·数据库·sql·mysql·adb
坚定信念,勇往无前28 分钟前
springboot单机支持1w并发,需要做哪些优化
java·spring boot·后端
老友@1 小时前
OnlyOffice:前端编辑器与后端API实现高效办公
前端·后端·websocket·编辑器·onlyoffice
致奋斗的我们1 小时前
Nginx反向代理及负载均衡
linux·运维·mysql·nginx·负载均衡·shell·openeluer
HeartRaindj1 小时前
【中间件开发】kafka使用场景与设计原理
分布式·中间件·kafka
小林熬夜学编程2 小时前
【MySQL】第八弹---全面解析数据库表的增删改查操作:从创建到检索、排序与分页
linux·开发语言·数据库·mysql·算法
风月歌2 小时前
基于springboot校园健康系统的设计与实现(源码+文档)
java·spring boot·后端·mysql·毕业设计·mybatis·源码
m0_748239472 小时前
Spring Boot框架知识总结(超详细)
java·spring boot·后端