OpenAI发布GPT-4思维破解新策略,Ilya亦有贡献!

OpenAI正在研究如何破解GPT-4的思维,并公开了超级对齐团队的工作,Ilya Sutskever也在作者名单中。

GPT-4o是否具备记忆能力?DeepMind和开源社区解开LLM记忆的谜团 !_

GPT-4o深夜发布!Plus免费可用!https://www.zhihu.com/pin/1773645611381747712

没体验过OpenAI最新版GPT-4o?快戳最详细升级教程,几分钟搞定:

升级ChatGPT-4o Turbo步骤https://www.zhihu.com/pin/1768399982598909952

该研究提出了一种改进大规模训练稀疏自编码器的方法,并成功将GPT-4的内部表征解构为1600万个可理解的特征。

这使得复杂语言模型的内部工作变得更加透明。

目前,语言模型神经网络的内部工作原理仍是一个"黑盒",无法完全理解。

为了理解和解释神经网络,首先需要找到对神经计算有用的基本构件。

然而,神经网络中的激活通常表现出不可预测和复杂的模式,每次输入几乎总会引发密集的激活。

而现实世界中其实很稀疏,在任何给定的情境中,人脑只有一小部分相关神经元会被激活。

在OpenAI超级对齐团队的这项研究中,他们推出了一种基于TopK激活函数的新稀疏自编码器(SAE)训练技术栈,消除了特征缩小问题,能够直接设定L0(直接控制网络中非零激活的数量)。

该方法在均方误差(MSE)与L0评估指标上表现优异,即使在1600万规模的训练中,几乎不产生失活的潜在单元(latent)。

具体来说,他们使用GPT-2 small和GPT-4系列模型的残差流作为自编码器的输入,选取网络深层(接近输出层)的残差流,如GPT-4的5/6层、GPT-2 small的第8层。

并使用之前工作中提出的基线ReLU自编码器架构,编码器通过ReLU激活获得稀疏latent z,解码器从z中重建残差流。

损失函数包括重建MSE损失和L1正则项,用于促进latent稀疏性。

此外,自编码器训练时容易出现大量latent永远不被激活(失活)的情况,导致计算资源浪费。

团队的解决方案包括两个关键技术:

  1. 将编码器权重初始化为解码器权重的转置,使latent在初始化时可激活。

  2. 添加辅助重建损失项,模拟用top-kaux个失活latent进行重建的损失。

通过这些方法,即使是1600万latent的大规模自编码器,失活率也只有7%。

团队还提出了多重TopK损失函数的改进方案,提高了高稀疏情况下的泛化能力,并且探讨了两种不同的训练策略对latent数量的影响,这里就不过多展开了。

推荐阅读:

GPT-4o是否具备记忆能力?DeepMind和开源社区解开LLM记忆的谜团 !

如何免费使用GPT-4o?如何升级GPT...

更强大Mamba-2正式发布啦!!!

黎曼猜想取得重大进展!!

相关推荐
通义灵码17 分钟前
在 Excel 中使用通义灵码辅助开发 VBA 程序
人工智能·阿里云·excel·vba·通义灵码
Francek Chen25 分钟前
【华为鸿蒙电脑】首款鸿蒙电脑发布:MateBook Fold 非凡大师 & MateBook Pro,擎云星河计划启动
人工智能·华为·电脑·harmonyos·matebook
攻城狮7号38 分钟前
深度学习框架双雄:TensorFlow与PyTorch的较量与共生
人工智能·pytorch·深度学习·tensorflow
Python测试之道1 小时前
测试开发面试题:Python高级特性通俗讲解与实战解析
开发语言·python
雪兽软件3 小时前
2024年热门AI趋势及回顾
人工智能
摆烂仙君5 小时前
怎么样进行定性分析
人工智能·算法·机器学习·数学建模
这里是小悦同学呀!5 小时前
python学习day2
java·python·学习
kovlistudio5 小时前
机器学习第十七讲:PCA → 把100维数据压缩成3D视图仍保持主要特征
人工智能·机器学习
FL16238631297 小时前
荔枝成熟度分割数据集labelme格式2263张3类别
人工智能·深度学习
一点.点7 小时前
DRIVEGPT4: 通过大语言模型实现可解释的端到端自动驾驶
人工智能·语言模型·自然语言处理·自动驾驶