Segment Anything

参考:【图像分割】Segment Anything(Meta AI)论文解读-CSDN博客

背景

  • 提示分割任务:在给定任何分割提示下返回一个有效的分割掩码
  • 目标:开发一个可提示的图像分割的基础模型,在一个广泛的数据集上预训练,解决新数据分布上的一系列下游分割问题
  • 输入:提示+图片
  • 输出:mask

模型

  • prompt可以是一组前景/背景点、一个粗糙的框或掩码、自由形式的文本(上图中的Task)
  • 三个约束条件:一个强大的图像编码器计算图像嵌入,一个提示编码器嵌入提示,然后将两个信息源组合在一个轻量级掩码解码器中来预测分割掩码。(上图中的Model)
  • 数据加强:分三个阶段:在第一阶段,SAM(Segment everything model)协助注释器对掩码进行注释,类似于经典的交互式分割设置【train】。在第二阶段,SAM可以通过提示可能的对象位置来为对象子集自动生成掩码,注释器专注于对其余对象的注释,帮助增加掩码的多样性【annotate】。在最后一个阶段,我们用一个规则的前景点网格提示SAM,平均每张图像产生100个高质量的掩模。(上图中的Data)
  • 图像编码器:预训练的视觉变换器 (ViT)
  • 提示编码器
    • 两组提示:稀疏的(点、方框、文本)和密集的(mask)
      • 点和方框:位置编码与每种提示类型的学习嵌入相加
      • 文本:用 CLIP的现成文本编码器来表示自由格式文本
      • mask:使用卷积进行嵌入,并与图像嵌入进行元素求和
  • 掩码解码器
    • ​​​​​​​ 有效地将图像嵌入、提示嵌入和输出token映射到掩码。该设计的灵感来自于DETR,采用了对(带有动态掩模预测头的)Transformer decoder模块的修改。
相关推荐
古希腊掌管学习的神26 分钟前
[搜广推]王树森推荐系统笔记——曝光过滤 & Bloom Filter
算法·推荐算法
qystca27 分钟前
洛谷 P1706 全排列问题 C语言
算法
浊酒南街32 分钟前
决策树(理论知识1)
算法·决策树·机器学习
就爱学编程40 分钟前
重生之我在异世界学编程之C语言小项目:通讯录
c语言·开发语言·数据结构·算法
B站计算机毕业设计超人40 分钟前
计算机毕业设计PySpark+Hadoop中国城市交通分析与预测 Python交通预测 Python交通可视化 客流量预测 交通大数据 机器学习 深度学习
大数据·人工智能·爬虫·python·机器学习·课程设计·数据可视化
学术头条1 小时前
清华、智谱团队:探索 RLHF 的 scaling laws
人工智能·深度学习·算法·机器学习·语言模型·计算语言学
18号房客1 小时前
一个简单的机器学习实战例程,使用Scikit-Learn库来完成一个常见的分类任务——**鸢尾花数据集(Iris Dataset)**的分类
人工智能·深度学习·神经网络·机器学习·语言模型·自然语言处理·sklearn
feifeikon1 小时前
机器学习DAY3 : 线性回归与最小二乘法与sklearn实现 (线性回归完)
人工智能·机器学习·线性回归
游客5201 小时前
opencv中的常用的100个API
图像处理·人工智能·python·opencv·计算机视觉
古希腊掌管学习的神1 小时前
[机器学习]sklearn入门指南(2)
人工智能·机器学习·sklearn