PyTorch学习5:Logistic回归

文章目录


前言

介绍利用PyTorch实现Logistic回归的分类问题

一、分类问题简介

分类问题的输出为属于每一个类别的概率,概率值最大的即为所属类别。最常见的Sigmoid函数:Logistic函数。

二、示例

1.示例步骤

1.构建模型 class LogisticRegressionModel(torch.nn.Module):

2.定义损失函数和优化器

criterion = torch.nn.BCELoss(size_average=False)

optimizer = torch.optim.SGD(model.parameters(), lr=0.01)

3.训练过程

2.示例代码

代码如下(示例):

python 复制代码
import torch
import matplotlib.pyplot as plt
import torch.nn.functional as F

# prepare dataset
x_data = torch.Tensor([[1.0], [2.0], [3.0]])
y_data = torch.Tensor([[0], [0], [1]])


# design model using class
class LogisticRegressionModel(torch.nn.Module):
    def __init__(self):
        super(LogisticRegressionModel, self).__init__()
        self.linear = torch.nn.Linear(1, 1)

    def forward(self, x):
        y_pred = F.sigmoid(self.linear(x))
        return y_pred


model = LogisticRegressionModel()

# construct loss and optimizer
# 默认情况下,loss会基于element平均,如果size_average=False的话,loss会被累加。
criterion = torch.nn.BCELoss(size_average=False)
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
epoch_list = []
loss_list = []
# training cycle forward, backward, update
for epoch in range(10000):
    y_pred = model(x_data)
    loss = criterion(y_pred, y_data)
    print(epoch, loss.item())

    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
    epoch_list.append(epoch)
    loss_list.append(loss.item())

print('w = ', model.linear.weight.item())
print('b = ', model.linear.bias.item())

x_test = torch.Tensor([[4.0]])
y_test = model(x_test)
print('y_pred = ', y_test.data)
plt.plot(epoch_list, loss_list)
plt.ylabel('loss')
plt.xlabel('epoch')
plt.show()

得到如下结果:

总结

PyTorch学习5:Logistic回归

相关推荐
mucheni42 分钟前
迅为RK3568开发板OpeHarmony学习开发手册-修改应用程序名称
linux·前端·学习
YJlio1 小时前
进程和诊断工具学习笔记(8.19):Hyper-V 来宾调试与符号配置 —— 在虚拟化场景下用 LiveKd 抓现场
网络·笔记·学习
冻感糕人~2 小时前
Agent框架协议“三部曲”:MCP、A2A与AG-UI的协同演进
java·人工智能·学习·语言模型·大模型·agent·大模型学习
WMX10122 小时前
Origin学习记录
学习
d111111111d2 小时前
MPU6050简介(学习笔记)
笔记·stm32·单片机·嵌入式硬件·学习
好奇龙猫8 小时前
日语学习-日语知识点小记-构建基础-JLPT-N3阶段-二阶段(19):阶段练习
学习
松涛和鸣9 小时前
11.C 语言学习:递归、宏定义、预处理、汉诺塔、Fibonacci 等
linux·c语言·开发语言·学习·算法·排序算法
嵌入式-老费13 小时前
自己动手写深度学习框架(pytorch入门)
人工智能·pytorch·深度学习
Q***f63514 小时前
后端消息队列学习资源,RabbitMQ+Kafka
学习·kafka·rabbitmq
循环过三天14 小时前
7.7、Python-常用内置函数
笔记·python·学习