PyTorch学习5:Logistic回归

文章目录


前言

介绍利用PyTorch实现Logistic回归的分类问题

一、分类问题简介

分类问题的输出为属于每一个类别的概率,概率值最大的即为所属类别。最常见的Sigmoid函数:Logistic函数。

二、示例

1.示例步骤

1.构建模型 class LogisticRegressionModel(torch.nn.Module):

2.定义损失函数和优化器

criterion = torch.nn.BCELoss(size_average=False)

optimizer = torch.optim.SGD(model.parameters(), lr=0.01)

3.训练过程

2.示例代码

代码如下(示例):

python 复制代码
import torch
import matplotlib.pyplot as plt
import torch.nn.functional as F

# prepare dataset
x_data = torch.Tensor([[1.0], [2.0], [3.0]])
y_data = torch.Tensor([[0], [0], [1]])


# design model using class
class LogisticRegressionModel(torch.nn.Module):
    def __init__(self):
        super(LogisticRegressionModel, self).__init__()
        self.linear = torch.nn.Linear(1, 1)

    def forward(self, x):
        y_pred = F.sigmoid(self.linear(x))
        return y_pred


model = LogisticRegressionModel()

# construct loss and optimizer
# 默认情况下,loss会基于element平均,如果size_average=False的话,loss会被累加。
criterion = torch.nn.BCELoss(size_average=False)
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
epoch_list = []
loss_list = []
# training cycle forward, backward, update
for epoch in range(10000):
    y_pred = model(x_data)
    loss = criterion(y_pred, y_data)
    print(epoch, loss.item())

    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
    epoch_list.append(epoch)
    loss_list.append(loss.item())

print('w = ', model.linear.weight.item())
print('b = ', model.linear.bias.item())

x_test = torch.Tensor([[4.0]])
y_test = model(x_test)
print('y_pred = ', y_test.data)
plt.plot(epoch_list, loss_list)
plt.ylabel('loss')
plt.xlabel('epoch')
plt.show()

得到如下结果:

总结

PyTorch学习5:Logistic回归

相关推荐
水月wwww几秒前
vue学习之组件与标签
前端·javascript·vue.js·学习·vue
9523610 分钟前
数据结构-链表
java·数据结构·学习
找了一圈尾巴25 分钟前
软件架构设计学习-基本概念
学习·软件架构
驯狼小羊羔1 小时前
学习随笔-require和import
前端·学习
程序员霸哥哥1 小时前
从零搭建PyTorch计算机视觉模型
人工智能·pytorch·python·计算机视觉
2301_796512521 小时前
Rust编程学习 - 问号运算符会return一个Result 类型,但是如何使用main函数中使用问号运算符
开发语言·学习·算法·rust
机器学习之心1 小时前
MATLAB遗传算法优化RVFL神经网络回归预测(随机函数链接神经网络)
神经网络·matlab·回归
deng-c-f1 小时前
Linux C/C++ 学习日记(47):dpdk(八):UDP的pps测试:内核 VS dpdk
学习
胖哥真不错2 小时前
Python基于PyTorch实现多输入多输出进行CNN卷积神经网络回归预测项目实战
pytorch·python·毕业设计·课程设计·毕设·多输入多输出·cnn卷积神经网络回归预测
程序员-小李2 小时前
基于PyTorch的动物识别模型训练与应用实战
人工智能·pytorch·python