PyTorch学习5:Logistic回归

文章目录


前言

介绍利用PyTorch实现Logistic回归的分类问题

一、分类问题简介

分类问题的输出为属于每一个类别的概率,概率值最大的即为所属类别。最常见的Sigmoid函数:Logistic函数。

二、示例

1.示例步骤

1.构建模型 class LogisticRegressionModel(torch.nn.Module):

2.定义损失函数和优化器

criterion = torch.nn.BCELoss(size_average=False)

optimizer = torch.optim.SGD(model.parameters(), lr=0.01)

3.训练过程

2.示例代码

代码如下(示例):

python 复制代码
import torch
import matplotlib.pyplot as plt
import torch.nn.functional as F

# prepare dataset
x_data = torch.Tensor([[1.0], [2.0], [3.0]])
y_data = torch.Tensor([[0], [0], [1]])


# design model using class
class LogisticRegressionModel(torch.nn.Module):
    def __init__(self):
        super(LogisticRegressionModel, self).__init__()
        self.linear = torch.nn.Linear(1, 1)

    def forward(self, x):
        y_pred = F.sigmoid(self.linear(x))
        return y_pred


model = LogisticRegressionModel()

# construct loss and optimizer
# 默认情况下,loss会基于element平均,如果size_average=False的话,loss会被累加。
criterion = torch.nn.BCELoss(size_average=False)
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
epoch_list = []
loss_list = []
# training cycle forward, backward, update
for epoch in range(10000):
    y_pred = model(x_data)
    loss = criterion(y_pred, y_data)
    print(epoch, loss.item())

    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
    epoch_list.append(epoch)
    loss_list.append(loss.item())

print('w = ', model.linear.weight.item())
print('b = ', model.linear.bias.item())

x_test = torch.Tensor([[4.0]])
y_test = model(x_test)
print('y_pred = ', y_test.data)
plt.plot(epoch_list, loss_list)
plt.ylabel('loss')
plt.xlabel('epoch')
plt.show()

得到如下结果:

总结

PyTorch学习5:Logistic回归

相关推荐
试试勇气26 分钟前
Linux学习笔记(八)--环境变量与进程地址空间
linux·笔记·学习
蒙奇D索大28 分钟前
【数据结构】考研数据结构核心考点:平衡二叉树(AVL树)详解——平衡因子与4大旋转操作入门指南
数据结构·笔记·学习·考研·改行学it
andwhataboutit?1 小时前
Docker Compose学习
学习·docker·容器
im_AMBER2 小时前
数据结构 04 栈和队列
数据结构·笔记·学习
尘似鹤2 小时前
微信小程序学习(六)--多媒体操作
学习·微信小程序·小程序
UpYoung!3 小时前
无广技术贴!【PDF编辑器】Solid Converter PDF保姆级图文下载安装指南——实用推荐之PDF编辑软件
学习·数学建模·pdf·编辑器·运维开发·个人开发
达瓦里氏1233 小时前
重排反应是什么?从分子变化到四大关键特征解析
数据库·学习·化学
LiJieNiub3 小时前
基于 PyTorch 实现 MNIST 手写数字识别
pytorch·深度学习·学习
Geek攻城猫3 小时前
02117 信息组织【第六章】
学习
流***陌3 小时前
线上教学小程序:构建高效互动的云端学习空间
学习·小程序