PyTorch学习5:Logistic回归

文章目录


前言

介绍利用PyTorch实现Logistic回归的分类问题

一、分类问题简介

分类问题的输出为属于每一个类别的概率,概率值最大的即为所属类别。最常见的Sigmoid函数:Logistic函数。

二、示例

1.示例步骤

1.构建模型 class LogisticRegressionModel(torch.nn.Module):

2.定义损失函数和优化器

criterion = torch.nn.BCELoss(size_average=False)

optimizer = torch.optim.SGD(model.parameters(), lr=0.01)

3.训练过程

2.示例代码

代码如下(示例):

python 复制代码
import torch
import matplotlib.pyplot as plt
import torch.nn.functional as F

# prepare dataset
x_data = torch.Tensor([[1.0], [2.0], [3.0]])
y_data = torch.Tensor([[0], [0], [1]])


# design model using class
class LogisticRegressionModel(torch.nn.Module):
    def __init__(self):
        super(LogisticRegressionModel, self).__init__()
        self.linear = torch.nn.Linear(1, 1)

    def forward(self, x):
        y_pred = F.sigmoid(self.linear(x))
        return y_pred


model = LogisticRegressionModel()

# construct loss and optimizer
# 默认情况下,loss会基于element平均,如果size_average=False的话,loss会被累加。
criterion = torch.nn.BCELoss(size_average=False)
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
epoch_list = []
loss_list = []
# training cycle forward, backward, update
for epoch in range(10000):
    y_pred = model(x_data)
    loss = criterion(y_pred, y_data)
    print(epoch, loss.item())

    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
    epoch_list.append(epoch)
    loss_list.append(loss.item())

print('w = ', model.linear.weight.item())
print('b = ', model.linear.bias.item())

x_test = torch.Tensor([[4.0]])
y_test = model(x_test)
print('y_pred = ', y_test.data)
plt.plot(epoch_list, loss_list)
plt.ylabel('loss')
plt.xlabel('epoch')
plt.show()

得到如下结果:

总结

PyTorch学习5:Logistic回归

相关推荐
小马爱打代码11 分钟前
RabbitMQ:系统学习笔记
笔记·学习·rabbitmq
YJlio15 分钟前
进程和诊断工具速查手册(8.13):VMMap / DebugView / LiveKd / Handle / ListDLLs 一页式现场排障清单
数据库·笔记·学习
青衫码上行2 小时前
【Java Web学习 | 第12篇】JavaScript(6)DOM
java·开发语言·前端·javascript·学习
YangYang9YangYan2 小时前
中专生学历提升与职业发展指南
大数据·人工智能·学习·数据分析
深蓝海拓3 小时前
YOLO v11的学习记录(五) 使用自定义数据从头训练一个实例分割的模型
学习·yolo
Gary Studio3 小时前
鋰電池充電芯片學習
学习
菜鸟‍3 小时前
【前端学习】React学习【万字总结】
前端·学习·react.js
AA陈超3 小时前
ASC学习笔记0019:返回给定游戏属性的当前值,如果未找到该属性则返回零。
c++·笔记·学习·游戏·ue5·虚幻引擎
知南x4 小时前
【STM32MP157 异核通信框架学习篇】(10)Linux下Remoteproc相关API (下)
linux·stm32·学习
Danceful_YJ7 小时前
33.Transformer架构
人工智能·pytorch·深度学习