PyTorch学习5:Logistic回归

文章目录


前言

介绍利用PyTorch实现Logistic回归的分类问题

一、分类问题简介

分类问题的输出为属于每一个类别的概率,概率值最大的即为所属类别。最常见的Sigmoid函数:Logistic函数。

二、示例

1.示例步骤

1.构建模型 class LogisticRegressionModel(torch.nn.Module):

2.定义损失函数和优化器

criterion = torch.nn.BCELoss(size_average=False)

optimizer = torch.optim.SGD(model.parameters(), lr=0.01)

3.训练过程

2.示例代码

代码如下(示例):

python 复制代码
import torch
import matplotlib.pyplot as plt
import torch.nn.functional as F

# prepare dataset
x_data = torch.Tensor([[1.0], [2.0], [3.0]])
y_data = torch.Tensor([[0], [0], [1]])


# design model using class
class LogisticRegressionModel(torch.nn.Module):
    def __init__(self):
        super(LogisticRegressionModel, self).__init__()
        self.linear = torch.nn.Linear(1, 1)

    def forward(self, x):
        y_pred = F.sigmoid(self.linear(x))
        return y_pred


model = LogisticRegressionModel()

# construct loss and optimizer
# 默认情况下,loss会基于element平均,如果size_average=False的话,loss会被累加。
criterion = torch.nn.BCELoss(size_average=False)
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
epoch_list = []
loss_list = []
# training cycle forward, backward, update
for epoch in range(10000):
    y_pred = model(x_data)
    loss = criterion(y_pred, y_data)
    print(epoch, loss.item())

    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
    epoch_list.append(epoch)
    loss_list.append(loss.item())

print('w = ', model.linear.weight.item())
print('b = ', model.linear.bias.item())

x_test = torch.Tensor([[4.0]])
y_test = model(x_test)
print('y_pred = ', y_test.data)
plt.plot(epoch_list, loss_list)
plt.ylabel('loss')
plt.xlabel('epoch')
plt.show()

得到如下结果:

总结

PyTorch学习5:Logistic回归

相关推荐
xiaobai1788 小时前
测试工程师入门AI技术 - 前序:跨越焦虑,从优势出发开启学习之旅
人工智能·学习
北岛寒沫8 小时前
北京大学国家发展研究院 经济学原理课程笔记(第二十一课 金融学基础)
经验分享·笔记·学习
扑火的小飞蛾9 小时前
网络安全小白学习路线图 (基于提供文档库)
学习·安全·web安全
优雅的潮叭9 小时前
c++ 学习笔记之 malloc
c++·笔记·学习
小途软件9 小时前
用于机器人电池电量预测的Sarsa强化学习混合集成方法
java·人工智能·pytorch·python·深度学习·语言模型
薛不痒10 小时前
深度学习之优化模型(数据预处理,数据增强,调整学习率)
深度学习·学习
昵称已被吞噬~‘(*@﹏@*)’~11 小时前
【RL+空战】学习记录03:基于JSBSim构造简易空空导弹模型,并结合python接口调用测试
开发语言·人工智能·python·学习·深度强化学习·jsbsim·空战
我想我不够好。11 小时前
学到的知识点 1.8
学习
旖旎夜光12 小时前
Linux(9)
linux·学习
浩瀚地学12 小时前
【Java】常用API(二)
java·开发语言·经验分享·笔记·学习