【力扣】 两个字符串的最小ASCII删除和

一、题目描述

给定两个字符串s1s2,返回使两个字符串相等所需删除字符的 ASCII值的最小和

示例 1:

复制代码
输入: s1 = "sea", s2 = "eat"
输出: 231
解释: 在 "sea" 中删除 "s" 并将 "s" 的值(115)加入总和。
在 "eat" 中删除 "t" 并将 116 加入总和。
结束时,两个字符串相等,115 + 116 = 231 就是符合条件的最小和。

示例 2:

复制代码
输入: s1 = "delete", s2 = "leet"
输出: 403
解释: 在 "delete" 中删除 "dee" 字符串变成 "let",
将 100[d]+101[e]+101[e] 加入总和。在 "leet" 中删除 "e" 将 101[e] 加入总和。
结束时,两个字符串都等于 "let",结果即为 100+101+101+101 = 403 。
如果改为将两个字符串转换为 "lee" 或 "eet",我们会得到 433 或 417 的结果,比答案更大。

提示:

  • 0 <= s1.length, s2.length <= 1000
  • s1s2 由小写英文字母组成

二、解题思路(动态规划)
正难则反:求两个字符串的最小 ASCII 删除和, 其实就是找到两个字符串中所有的公共子序列里面, ASCII 最大和。
因此,我们的思路就是按照
最长公共子序列
的分析方式来分析。

关于最长公共子序列问题,可以参考下面博客:

【力扣】最长公共子序列-CSDN博客
1、状态表示
dp[i][j] 表示: s1 的 [0, i] 区间以及 s2 的 [0, j] 区间内的所有的子序列中,公 共子序列的 ASCII 最大和 。
2、状态转移方程
对于 dp[i][j] 根据最后一个位置的元素,结合题目要求,分情况讨论:
(1)当 s1[i] == s2[j] 时:应该先在 s1 的 [0, i - 1] 区间以及 s2 的 [0, j - 1] 区间内找一个公共子序列的 ASCII 最大和,然后在它们后面加上一个 s1[i] 字符即可。
此时 dp[i][j] = dp[i - 1][j - 1] + s1[i];
(2)当 s1[i] != s2[j] 时:公共子序列的ASCII最大和会有三种可能:

  • s1 的 [0, i - 1] 区间以及 s2 的 [0, j] 区间内:此时 dp[i][j] = dp[i - 1][j] ;
  • s1 的 [0, i] 区间以及 s2 的 [0, j - 1] 区间内:此时 dp[i][j] = dp[i][j - 1] ;
  • s1 的 [0, i - 1] 区间以及 s2 的 [0, j - 1] 区间内:此时 dp[i][j] = dp[i - 1][j - 1] 。

但是前两种情况里面包含了第三种情况,因此仅需考虑前两种情况下的最大值即可。
综上所述,状态转移方程为:
当 s1[i - 1] == s2[j - 1] 时, dp[i][j] = dp[i - 1][j - 1] + s1[i] ;
当 s1[i - 1] != s2[j - 1] 时, dp[i][j] = max(dp[i - 1][j], dp[i][j - 1])
3、初始化
我们将原始 dp 表的规模多加上一行和一列,表示空串。 引入空串后,大大的方便了初始化。
但要 注意下标的映射关系 ,以及里面的值要保证后续填表是正确的。
当 s1 为空时,没有长度,同理 s2 也是。因此第一行和第一列里面的值初始化为 0,即可保证
后续填表是正确的。
4、填表顺序
从上往下填每一行,每一行从左往右。
5、返回值
(1)先找到 dp[m][n] ,也是最大公共 ASCII 和;(2)统计两个字符串的 ASCII 码和 sum; (3)返回 sum - 2 * dp[m][n]

三、代码

java 复制代码
public int minimumDeleteSum(String s1, String s2) {
        int m = s1.length();
        int n = s2.length();
        int[][] dp = new int[m+1][n+1];
        for(int i = 1; i <= m; i++) {
            for(int j = 1; j <= n; j++) {
                if(s1.charAt(i-1) == s2.charAt(j-1)) {
                    dp[i][j] = dp[i-1][j-1] + s1.charAt(i-1);
                }else {
                    dp[i][j] = Math.max(dp[i][j-1], dp[i-1][j]);
                }
            }
        }
        int sum = 0;
        for(char ch : s1.toCharArray()) {
            sum += ch;
        }
        for(char ch : s2.toCharArray()) {
            sum += ch;
        }
        return sum - dp[m][n] - dp[m][n];
    }
相关推荐
bingbingyihao1 小时前
多数据源 Demo
java·springboot
tainshuai2 小时前
用 KNN 算法解锁分类的奥秘:从电影类型到鸢尾花开
算法·分类·数据挖掘
在努力的前端小白6 小时前
Spring Boot 敏感词过滤组件实现:基于DFA算法的高效敏感词检测与替换
java·数据库·spring boot·文本处理·敏感词过滤·dfa算法·组件开发
Coovally AI模型快速验证8 小时前
农田扫描提速37%!基于检测置信度的无人机“智能抽查”路径规划,Coovally一键加速模型落地
深度学习·算法·yolo·计算机视觉·transformer·无人机
pusue_the_sun8 小时前
数据结构:二叉树oj练习
c语言·数据结构·算法·二叉树
一叶飘零_sweeeet8 小时前
从繁琐到优雅:Java Lambda 表达式全解析与实战指南
java·lambda·java8
RaymondZhao348 小时前
【全面推导】策略梯度算法:公式、偏差方差与进化
人工智能·深度学习·算法·机器学习·chatgpt
艾伦~耶格尔9 小时前
【集合框架LinkedList底层添加元素机制】
java·开发语言·学习·面试
zhangfeng11339 小时前
DBSCAN算法详解和参数优化,基于密度的空间聚类算法,特别擅长处理不规则形状的聚类和噪声数据
算法·机器学习·聚类
一只叫煤球的猫9 小时前
🕰 一个案例带你彻底搞懂延迟双删
java·后端·面试