在mmdet 3.0系列中使用visualizer进行目标检测真实框和检测框的可视化和绘制 并保存为图像

在 MMDetection 3.0 中,使用 visualizer 进行目标检测的真实框和检测框的可视化和绘制,并将结果保存为图像,是一个比较简便且高效的方法。以下是具体的实现步骤和代码示例。

步骤

加载必要的库和初始化模型。

加载测试图像和数据集。

进行推理。

使用 visualizer 绘制真实框和检测框。

保存绘制结果。

示例代码

首先,确保你的环境中安装了最新版本的 MMDetection。

bash 复制代码
pip install mmdet==3.0.0
pip install -U openmim
mim install mmdet

以下是一个完整的代码示例:

python 复制代码
import mmcv
import cv2
import numpy as np
import matplotlib.pyplot as plt
from mmdet.apis import init_detector, inference_detector
from mmdet.utils import register_all_modules
from mmdet.visualization import DetLocalVisualizer
from mmdet.datasets import build_dataset
from mmdet.datasets.pipelines import Compose

# 注册所有模块
register_all_modules()

# 配置文件和模型检查点的路径
config_file = 'path/to/your/config/file.py'
checkpoint_file = 'path/to/your/checkpoint/file.pth'

# 初始化模型
model = init_detector(config_file, checkpoint_file, device='cuda:0')

# 测试图像路径
img = 'path/to/your/test/image.jpg'

# 构建数据集
cfg = mmcv.Config.fromfile(config_file)
dataset = build_dataset(cfg.data.test)

# 获取样本数据
data = dataset[0]

# 提取图像和 ground truth boxes
img_path = data['img_metas'][0].data['filename']
gt_bboxes = data['gt_bboxes'][0].data.numpy()
gt_labels = data['gt_labels'][0].data.numpy()

# 加载图像
img = mmcv.imread(img_path)

# 绘制 ground truth boxes
visualizer = DetLocalVisualizer()
visualizer.dataset_meta = dataset.metainfo

# 创建 ground truth 数据
gt_data = {
    'bboxes': gt_bboxes,
    'labels': gt_labels
}

# 绘制 ground truth boxes
visualizer.add_datasample('ground_truth', img, gt_data, draw_gt=True)

# 推理检测
result = inference_detector(model, img)

# 绘制检测框
visualizer.add_datasample('detection', img, result, draw_pred=True, show=True)

# 保存结果图像
out_file = 'path/to/save/result_image.jpg'
visualizer.add_datasample('detection', img, result, draw_pred=True, show=False, out_file=out_file)
相关推荐
金井PRATHAMA1 天前
认知语义学隐喻理论对人工智能自然语言处理中深层语义分析的赋能与挑战
人工智能·自然语言处理·知识图谱
J_Xiong01171 天前
【VLMs篇】07:Open-Qwen2VL:在学术资源上对完全开放的多模态大语言模型进行计算高效的预训练
人工智能·语言模型·自然语言处理
老兵发新帖1 天前
LlamaFactory能做哪些?
人工智能
2202_756749691 天前
LLM大模型-大模型微调(常见微调方法、LoRA原理与实战、LLaMA-Factory工具部署与训练、模型量化QLoRA)
人工智能·深度学习·llama
人有一心1 天前
深度学习中显性特征组合的网络结构crossNet
人工智能·深度学习
机器之心1 天前
用光学生成图像,几乎0耗电,浙大校友一作研究登Nature
人工智能·openai
苏苏susuus1 天前
NLP:Transformer之self-attention(特别分享3)
人工智能·自然语言处理·transformer
猫天意1 天前
【目标检测】metrice_curve和loss_curve对比图可视化
人工智能·深度学习·目标检测·计算机视觉·cv
山烛1 天前
OpenCV:图像透视变换
人工智能·opencv·计算机视觉·图像透视变换