在mmdet 3.0系列中使用visualizer进行目标检测真实框和检测框的可视化和绘制 并保存为图像

在 MMDetection 3.0 中,使用 visualizer 进行目标检测的真实框和检测框的可视化和绘制,并将结果保存为图像,是一个比较简便且高效的方法。以下是具体的实现步骤和代码示例。

步骤

加载必要的库和初始化模型。

加载测试图像和数据集。

进行推理。

使用 visualizer 绘制真实框和检测框。

保存绘制结果。

示例代码

首先,确保你的环境中安装了最新版本的 MMDetection。

bash 复制代码
pip install mmdet==3.0.0
pip install -U openmim
mim install mmdet

以下是一个完整的代码示例:

python 复制代码
import mmcv
import cv2
import numpy as np
import matplotlib.pyplot as plt
from mmdet.apis import init_detector, inference_detector
from mmdet.utils import register_all_modules
from mmdet.visualization import DetLocalVisualizer
from mmdet.datasets import build_dataset
from mmdet.datasets.pipelines import Compose

# 注册所有模块
register_all_modules()

# 配置文件和模型检查点的路径
config_file = 'path/to/your/config/file.py'
checkpoint_file = 'path/to/your/checkpoint/file.pth'

# 初始化模型
model = init_detector(config_file, checkpoint_file, device='cuda:0')

# 测试图像路径
img = 'path/to/your/test/image.jpg'

# 构建数据集
cfg = mmcv.Config.fromfile(config_file)
dataset = build_dataset(cfg.data.test)

# 获取样本数据
data = dataset[0]

# 提取图像和 ground truth boxes
img_path = data['img_metas'][0].data['filename']
gt_bboxes = data['gt_bboxes'][0].data.numpy()
gt_labels = data['gt_labels'][0].data.numpy()

# 加载图像
img = mmcv.imread(img_path)

# 绘制 ground truth boxes
visualizer = DetLocalVisualizer()
visualizer.dataset_meta = dataset.metainfo

# 创建 ground truth 数据
gt_data = {
    'bboxes': gt_bboxes,
    'labels': gt_labels
}

# 绘制 ground truth boxes
visualizer.add_datasample('ground_truth', img, gt_data, draw_gt=True)

# 推理检测
result = inference_detector(model, img)

# 绘制检测框
visualizer.add_datasample('detection', img, result, draw_pred=True, show=True)

# 保存结果图像
out_file = 'path/to/save/result_image.jpg'
visualizer.add_datasample('detection', img, result, draw_pred=True, show=False, out_file=out_file)
相关推荐
m0_650108243 小时前
【论文精读】CMD:迈向高效视频生成的新范式
人工智能·论文精读·视频扩散模型·高效生成·内容 - 运动分解·latent 空间
电鱼智能的电小鱼3 小时前
基于电鱼 AI 工控机的智慧工地视频智能分析方案——边缘端AI检测,实现无人值守下的实时安全预警
网络·人工智能·嵌入式硬件·算法·安全·音视频
年年测试3 小时前
AI驱动的测试:用Dify工作流实现智能缺陷分析与分类
人工智能·分类·数据挖掘
唐兴通个人4 小时前
人工智能Deepseek医药AI培训师培训讲师唐兴通讲课课程纲要
大数据·人工智能
共绩算力5 小时前
Llama 4 Maverick Scout 多模态MoE新里程碑
人工智能·llama·共绩算力
DashVector5 小时前
向量检索服务 DashVector产品计费
数据库·数据仓库·人工智能·算法·向量检索
AI纪元故事会5 小时前
【计算机视觉目标检测算法对比:R-CNN、YOLO与SSD全面解析】
人工智能·算法·目标检测·计算机视觉
音视频牛哥5 小时前
从协议规范和使用场景探讨为什么SmartMediaKit没有支持DASH
人工智能·音视频·大牛直播sdk·dash·dash还是rtmp·dash还是rtsp·dash还是hls
赞奇科技Xsuperzone6 小时前
DGX Spark 实战解析:模型选择与效率优化全指南
大数据·人工智能·gpt·spark·nvidia
音视频牛哥6 小时前
SmartMediaKit:如何让智能系统早人一步“跟上现实”的时间架构--从实时流媒体到系统智能的演进
人工智能·计算机视觉·音视频·音视频开发·具身智能·十五五规划具身智能·smartmediakit