在mmdet 3.0系列中使用visualizer进行目标检测真实框和检测框的可视化和绘制 并保存为图像

在 MMDetection 3.0 中,使用 visualizer 进行目标检测的真实框和检测框的可视化和绘制,并将结果保存为图像,是一个比较简便且高效的方法。以下是具体的实现步骤和代码示例。

步骤

加载必要的库和初始化模型。

加载测试图像和数据集。

进行推理。

使用 visualizer 绘制真实框和检测框。

保存绘制结果。

示例代码

首先,确保你的环境中安装了最新版本的 MMDetection。

bash 复制代码
pip install mmdet==3.0.0
pip install -U openmim
mim install mmdet

以下是一个完整的代码示例:

python 复制代码
import mmcv
import cv2
import numpy as np
import matplotlib.pyplot as plt
from mmdet.apis import init_detector, inference_detector
from mmdet.utils import register_all_modules
from mmdet.visualization import DetLocalVisualizer
from mmdet.datasets import build_dataset
from mmdet.datasets.pipelines import Compose

# 注册所有模块
register_all_modules()

# 配置文件和模型检查点的路径
config_file = 'path/to/your/config/file.py'
checkpoint_file = 'path/to/your/checkpoint/file.pth'

# 初始化模型
model = init_detector(config_file, checkpoint_file, device='cuda:0')

# 测试图像路径
img = 'path/to/your/test/image.jpg'

# 构建数据集
cfg = mmcv.Config.fromfile(config_file)
dataset = build_dataset(cfg.data.test)

# 获取样本数据
data = dataset[0]

# 提取图像和 ground truth boxes
img_path = data['img_metas'][0].data['filename']
gt_bboxes = data['gt_bboxes'][0].data.numpy()
gt_labels = data['gt_labels'][0].data.numpy()

# 加载图像
img = mmcv.imread(img_path)

# 绘制 ground truth boxes
visualizer = DetLocalVisualizer()
visualizer.dataset_meta = dataset.metainfo

# 创建 ground truth 数据
gt_data = {
    'bboxes': gt_bboxes,
    'labels': gt_labels
}

# 绘制 ground truth boxes
visualizer.add_datasample('ground_truth', img, gt_data, draw_gt=True)

# 推理检测
result = inference_detector(model, img)

# 绘制检测框
visualizer.add_datasample('detection', img, result, draw_pred=True, show=True)

# 保存结果图像
out_file = 'path/to/save/result_image.jpg'
visualizer.add_datasample('detection', img, result, draw_pred=True, show=False, out_file=out_file)
相关推荐
Tadas-Gao4 分钟前
AI是否存在“系统一”与“系统二”?——从认知科学到深度学习架构的跨学科解读
人工智能·架构·系统架构·大模型·llm
小李子不吃李子4 分钟前
人工智能与创新第一章练习题
人工智能
汤姆yu33 分钟前
基于深度学习的水稻病虫害检测系统
人工智能·深度学习
程序员水自流1 小时前
【AI大模型第9集】Function Calling,让AI大模型连接外部世界
java·人工智能·llm
手揽回忆怎么睡1 小时前
Streamlit学习实战教程级,一个交互式的机器学习实验平台!
人工智能·学习·机器学习
小徐Chao努力1 小时前
【Langchain4j-Java AI开发】06-工具与函数调用
java·人工智能·python
db_murphy1 小时前
时事篇 | Manus收购
人工智能
攻城狮7号1 小时前
阶跃星辰开源NextStep-1.1图像模型:告别“鬼影”与“马赛克”?
人工智能·ai图像生成·nextstep-1.1·阶跃星辰开源模型·图像模型
_codemonster1 小时前
BERT中的padding操作
人工智能·深度学习·bert
笙枫1 小时前
基于AI Agent框架下的能源优化调度方案和实践 | 架构设计
人工智能·能源