Flink 入门案例介绍

一、工程搭建

  • 在 IDEA 中创建一个 Maven 工程:FlinkTutorial

  • 在 pom 文件中引入依赖:

    xml 复制代码
    <dependencies>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-java</artifactId>
            <version>1.10.1</version>
        </dependency>
        <!-- 2.12 是scala版本 -->
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-streaming-java_2.12</artifactId>
            <version>1.10.1</version>
        </dependency>
    </dependencies>

二、批处理 WordCount 案例

java 复制代码
package com.app.wc

// 批处理 WordCount
public class WordCount {
    public static void main(String[] args) throws Exception {
    	// 1.创建 flink 执行环境
    	ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
    	
    	// 2.读取文件数据
    	// DataSource 是 Operator 的子类,Operator 是 DataSet 的子类
    	// Flink 的批处理是基于 DataSet 类型的 API 来处理
    	DataSource<String> inputData = env.readTextFile("datas/word.txt");
    	
    	// 3.执行数据处理(按空格分词并转换成 (word, 1) 这样的二元组格式),分组聚合
    	DataSet<Tuple2<String, Integer>> result = inputData.flatMap(new MyFlatMap())  //需要传入FlatMapFunction接口的实现类
    			 .groupBy(0)  //可以传入KeySelector实现类或位置索引或字段名
    			 .sum(1);  // 传入进行聚合计算的位置索引
    	
    	// 4.输出
    	result.print();
    	
    }
    
    // 自定义FlatMapFunction接口的实现类,并定义输入和输出泛型,实现 flatMap 方法
    // Tuple2 是 flink 包下的,区别于 Scala 中的 Tuple2
    public class MyFlatMap implements FlatMapFunction<String, Tuple2<String, Integer>> {
    	@override
    	public void flatMap(String value, Collector<Tuple2<String, Integer>> out) throws Exception {
    		// 按空格分词
    		String[] words = value.split(" ");
    		
    		// 遍历数组并转换为二元组输出
    		for(String word : words) {
    			out.collect(new Tuple2(word, 1));
    		}
    	}
    }
}

三、有界流处理 WordCount 案例

java 复制代码
package com.app.wc

// 流处理WordCount
public class StreamWordCount {
	public static void main(String[] args) throws Exception {
		// 1.创建flink流处理执行环境对象
		StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
		
		// env.setParallelism(8); // 设置并发度
		
		// 2.读取文件
		StreamDataSource<String> inputData = env.readTextFile("datas/word.txt");
		
		// 3.处理数据(分词,转换结构),并分组聚合
		DataStream<Tuple2<String, Integer>> result = inputData.flatMap(new MyFlatMap()).keyBy(0).sum(1);
		
		// 4.输出
		result.print();
		
		// 5.执行任务(流处理是事件触发的)
		env.execute();
		
	}
	
	 // 自定义FlatMapFunction接口的实现类,并定义输入和输出泛型,实现 flatMap 方法
    // Tuple2 是 flink 包下的,区别于 Scala 中的 Tuple2
    public class MyFlatMap implements FlatMapFunction<String, Tuple2<String, Integer>> {
    	@override
    	public void flatMap(String value, Collector<Tuple2<String, Integer>> out) throws Exception {
    		// 按空格分词
    		String[] words = value.split(" ");
    		
    		// 遍历数组并转换为二元组输出
    		for(String word : words) {
    			out.collect(new Tuple2(word, 1));
    		}
    	}
    }
}

四、无界流处理 WordCount 案例

方便生产环境部署

java 复制代码
package com.app.wc

public class StreamWordCount2 {
	public static void main(String[] args) throws Exception {
		// 1.创建flink流处理执行环境对象
		StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
		
		// env.setParallelism(8); // 设置并发度
		
		// 2.监听 7777 端口服务(nc -lk 7777)
		// 2.1 使用 ParameterTool 类从启动参数中获取配置项
		ParameterTool tool = ParameterTool.formArgs(args);
		String hostname = tool.get("hostname");
		int port = tool.getInt("port");
		
		// 2.2 获取数据流
		DataStream<String> inputData = env.socketTextFile(hostname, port);
		
		// 3.处理数据(分词,转换结构),并分组聚合
		DataStream<Tuple2<String, Integer>> result = inputData.flatMap(new MyFlatMap()).keyBy(0).sum(1);
		
		// 4.输出
		result.print();
		
		// 5.执行任务(流处理是事件触发的)
		env.execute();
		
	}
	
	 // 自定义FlatMapFunction接口的实现类,并定义输入和输出泛型,实现 flatMap 方法
    // Tuple2 是 flink 包下的,区别于 Scala 中的 Tuple2
    public class MyFlatMap implements FlatMapFunction<String, Tuple2<String, Integer>> {
    	@override
    	public void flatMap(String value, Collector<Tuple2<String, Integer>> out) throws Exception {
    		// 按空格分词
    		String[] words = value.split(" ");
    		
    		// 遍历数组并转换为二元组输出
    		for(String word : words) {
    			out.collect(new Tuple2(word, 1));
    		}
    	}
    }
}
相关推荐
Lionel_SSL2 小时前
《深入理解Java虚拟机》第三章读书笔记:垃圾回收机制与内存管理
java·开发语言·jvm
记得开心一点嘛2 小时前
手搓Springboot
java·spring boot·spring
老华带你飞3 小时前
租房平台|租房管理平台小程序系统|基于java的租房系统 设计与实现(源码+数据库+文档)
java·数据库·小程序·vue·论文·毕设·租房系统管理平台
独行soc3 小时前
2025年渗透测试面试题总结-66(题目+回答)
java·网络·python·安全·web安全·adb·渗透测试
脑子慢且灵3 小时前
[JavaWeb]模拟一个简易的Tomcat服务(Servlet注解)
java·后端·servlet·tomcat·intellij-idea·web
fanstuck4 小时前
基于大模型的个性化推荐系统实现探索与应用
大数据·人工智能·语言模型·数据挖掘
华仔啊4 小时前
SpringBoot 中 6 种数据脱敏方案,第 5 种太强了,支持深度递归!
java·后端
异常驯兽师5 小时前
Spring 中处理 HTTP 请求参数注解全解析
java·spring·http
IT学长编程5 小时前
计算机毕业设计 基于大数据技术的医疗数据分析与研究 Python 大数据毕业设计 Hadoop毕业设计选题【附源码+文档报告+安装调试】
大数据·hadoop·机器学习·数据分析·毕业设计·毕业论文·医疗数据分析
连合机器人6 小时前
晨曦中的守望者:当科技为景区赋予温度
java·前端·科技