文章目录
- 外部排序
-
- 1.最基本的外部排序原理
- 2.外部排序的优化
- [2.1 败者树优化方法](#2.1 败者树优化方法)
- [2.2 置换-选择排序优化方法](#2.2 置换-选择排序优化方法)
- [2.3 最佳归并树](#2.3 最佳归并树)
外部排序
为什么要学习外部排序?
答:
在处理数据的过程中,我们需要把磁盘(外存)中存储的数据拿到内存中处理,因为内存处理更快,但是由于内存空间较小,外存空间很大,外存中的数据元素太多,无法一次全部读入内存进行排序。所以,通过外部排序就是实现对于外存存储元素排序的方法。
1.最基本的外部排序原理
假设在外存中,我们有48个记录,按照每三个记录为一块,建立好基本16个分块。
注意:在建立基本的分块之前,外存的每个小分块要先进行内部排序,保证这16个分块内部是有序的。
内存中,有2个输入缓冲区和1个输出缓冲区,采用归并排序的思想,第一次,先从16个分块中拿出两块,分别放入缓冲区1和缓冲区2.然后每次从这两个缓冲区6的开头,选最小的,放入输出缓冲区,然后凑齐3个记录,就回填外存。以此类推,直到把这1个分块,变为8个分块。
第二次开始,本质还是这个过程,但是值得注意的是,我们必须保证输入缓冲区不空,即如果一旦一个缓冲区的元素被拿空了,要立刻用该分块的其它元素补上。
外部排序时间开销=读写外存的时间+内部排序所需时间+内部归并所需时间
不难得知,采用多路归并可以减少归并趟数。
记结论:
生成初始片段r个,进行k路归并
则趟数S=⌈log~k~^r^⌉
2.外部排序的优化
方法1 方法2 优化 增加k 减少r 增加相应的输入缓冲区 减少每次从k个归并段中选一个最小元素的关键字比较次数 败者树优化方法 置换-选择排序优化方法
2.1 败者树优化方法
败者树用来减少关键字的比较次数。
将各个归并段段开头加入到败者树的叶子结点,然后开始构造败者树,注意,中间结点记录的是,当前胜者是来自哪个归并端,在得到冠军来自3号归并端后,将3号归并段的叶子结点移除,将3号归并段新的结点补上,此时,不需要比较太多次,通过败者树向上比较,就可以得出新的冠军,以此类推。
效率分析:
对于k路归并,第一次构造败者树需要对比关键字k-1次,
有了败者树,选出最小元素,只需要对比⌈log~2~^k^⌉
2.2 置换-选择排序优化方法
让归并段更少,即让归并段更长。
初始待排序文件,不断的将当前内存工作区中,大于minmax的最小值,加入归并段中,每加入一个,再从初始待排序文件中补充一个,直到内存工作区中的所有元素都小于minmax,然后开始输出归并段2,更改minmax,重复上述过程。
2.3 最佳归并树
对于归并过程进一步优化。
只讲干货:
每个初始归并端对应一个叶子结点,把归并段段块数作为叶子的权值。最好的归并的过程其实就是构造哈夫曼树的过程。
归并树的WPL=归并过程中的磁盘I/O次数
值得注意的是,k叉归并的最佳归并树一定是严格k叉树,所以很可能叶子结点的个数不满足构造严格k叉归并树,这时候需要补充虚段(权值为0的叶子结点,然后将这些权值为0的结点作为最初始的构造结点.
补充虚段的数量有公式:
(初始归并段数量-1)%(k-1)=u
若u=0,则说明不需要添加虚段,否则添加(k-1)-u个虚段。
下图是一个3路归并的最佳归并树。