关于样本方差的分母是 ( n-1 ) 而不是 ( n )的原因

样本方差的分母是 ( n-1 ) 而不是 ( n ) 的原因与统计学中的"自由度"概念有关。使用 ( n-1 ) 作为分母可以使样本方差成为总体方差的无偏估计量。

自由度

在计算样本方差时,我们需要先计算样本均值 ( \bar{x} )。样本中的 ( n ) 个数据点中,实际上只有 ( n-1 ) 个数据点是自由变化的,因为最后一个数据点可以通过样本均值和前面的 ( n-1 ) 个数据点确定。因此,我们说在计算样本方差时,有 ( n-1 ) 个自由度。

无偏估计

如果我们使用 ( n ) 作为分母来计算样本方差:

s n 2 = 1 n ∑ i = 1 n ( x i − x ˉ ) 2 s_n^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2 sn2=n1i=1∑n(xi−xˉ)2

这个估计量会系统性地低估总体方差 ( \sigma^2 )。这是因为在计算样本方差时,样本均值 ( \bar{x} ) 是根据样本数据计算出来的,这使得每个样本数据点 ( x_i ) 与 ( \bar{x} ) 的差异小于它们与总体均值 ( \mu ) 的差异。

为了纠正这种偏差,我们使用 ( n-1 ) 作为分母来计算样本方差:

s 2 = 1 n − 1 ∑ i = 1 n ( x i − x ˉ ) 2 s^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2 s2=n−11i=1∑n(xi−xˉ)2

这种调整使得样本方差成为总体方差的无偏估计量。这意味着在大量重复抽样的情况下,样本方差的期望值等于总体方差。

数学证明

为了证明这种调整的合理性,我们可以用期望值的概念进行解释。令样本方差的计算公式为:

s 2 = 1 n − 1 ∑ i = 1 n ( x i − x ˉ ) 2 s^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2 s2=n−11i=1∑n(xi−xˉ)2

然后考虑它的期望值:

E [ s 2 ] = E [ 1 n − 1 ∑ i = 1 n ( x i − x ˉ ) 2 ] E[s^2] = E\left[\frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2\right] E[s2]=E[n−11i=1∑n(xi−xˉ)2]

经过数学推导,可以证明:

E [ s 2 ] = σ 2 E[s^2] = \sigma^2 E[s2]=σ2

这表明使用 ( n-1 ) 作为分母能使样本方差的期望值等于总体方差,从而使样本方差成为总体方差的无偏估计量。

相关推荐
月疯15 小时前
样本熵和泊松指数的计算流程!!!
算法·机器学习·概率论
zyq~16 小时前
【课堂笔记】概率论-3
笔记·概率论
RE-190121 小时前
《深入浅出统计学》学习笔记(一)
大数据·数学·概率论·统计学·数理统计·知识笔记·深入浅出
phoenix@Capricornus2 天前
样本与样本值
人工智能·机器学习·概率论
qq_ddddd4 天前
对于随机变量x1, …, xn,其和的范数平方的期望不超过n倍各随机变量范数平方的期望之和
人工智能·神经网络·线性代数·机器学习·概率论·1024程序员节
无风听海6 天前
神经网络之样本方差的无偏估计
人工智能·神经网络·概率论
我要学习别拦我~7 天前
挑战概率直觉:蒙提霍尔问题的解密与应用
经验分享·概率论
一条星星鱼7 天前
从0到1:如何用统计学“看透”不同睡眠PSG数据集的差异(域偏差分析实战)
人工智能·深度学习·算法·概率论·归一化·睡眠psg
无风听海7 天前
神经网络之从自由度角度理解方差的无偏估计
神经网络·机器学习·概率论
CLubiy8 天前
【研究生随笔】PyTorch中的概率论
人工智能·pytorch·深度学习·概率论