关于样本方差的分母是 ( n-1 ) 而不是 ( n )的原因

样本方差的分母是 ( n-1 ) 而不是 ( n ) 的原因与统计学中的"自由度"概念有关。使用 ( n-1 ) 作为分母可以使样本方差成为总体方差的无偏估计量。

自由度

在计算样本方差时,我们需要先计算样本均值 ( \bar{x} )。样本中的 ( n ) 个数据点中,实际上只有 ( n-1 ) 个数据点是自由变化的,因为最后一个数据点可以通过样本均值和前面的 ( n-1 ) 个数据点确定。因此,我们说在计算样本方差时,有 ( n-1 ) 个自由度。

无偏估计

如果我们使用 ( n ) 作为分母来计算样本方差:

s n 2 = 1 n ∑ i = 1 n ( x i − x ˉ ) 2 s_n^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2 sn2=n1i=1∑n(xi−xˉ)2

这个估计量会系统性地低估总体方差 ( \sigma^2 )。这是因为在计算样本方差时,样本均值 ( \bar{x} ) 是根据样本数据计算出来的,这使得每个样本数据点 ( x_i ) 与 ( \bar{x} ) 的差异小于它们与总体均值 ( \mu ) 的差异。

为了纠正这种偏差,我们使用 ( n-1 ) 作为分母来计算样本方差:

s 2 = 1 n − 1 ∑ i = 1 n ( x i − x ˉ ) 2 s^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2 s2=n−11i=1∑n(xi−xˉ)2

这种调整使得样本方差成为总体方差的无偏估计量。这意味着在大量重复抽样的情况下,样本方差的期望值等于总体方差。

数学证明

为了证明这种调整的合理性,我们可以用期望值的概念进行解释。令样本方差的计算公式为:

s 2 = 1 n − 1 ∑ i = 1 n ( x i − x ˉ ) 2 s^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2 s2=n−11i=1∑n(xi−xˉ)2

然后考虑它的期望值:

E [ s 2 ] = E [ 1 n − 1 ∑ i = 1 n ( x i − x ˉ ) 2 ] E[s^2] = E\left[\frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2\right] E[s2]=E[n−11i=1∑n(xi−xˉ)2]

经过数学推导,可以证明:

E [ s 2 ] = σ 2 E[s^2] = \sigma^2 E[s2]=σ2

这表明使用 ( n-1 ) 作为分母能使样本方差的期望值等于总体方差,从而使样本方差成为总体方差的无偏估计量。

相关推荐
西西弗Sisyphus4 小时前
知识蒸馏 Knowledge Distillation 概率链式法则(Probability Chain Rule)
概率论·概率链式法则
西猫雷婶6 小时前
神经网络|(十二)概率论基础知识-先验/后验/似然概率基本概念
人工智能·神经网络·机器学习·回归·概率论
海绵宝宝汉堡包15 小时前
数据分析专栏记录之 -基础数学与统计知识 2 概率论基础与python
python·数据分析·概率论
simon_skywalker15 小时前
概率论基础教程第六章 随机变量的联合分布(一)
概率论
听风.8253 天前
机器学习6
人工智能·机器学习·概率论
simon_skywalker3 天前
概率论基础教程第5章 连续型随机变量(二)
概率论
C++、Java和Python的菜鸟7 天前
第六章 统计初步
算法·机器学习·概率论
神齐的小马11 天前
机器学习 [白板推导](十)[马尔可夫链蒙特卡洛法]
人工智能·机器学习·概率论
量化风云13 天前
『量化人的概率 03』PDF is all you need
python·金融·pdf·概率论·量化交易·量化课程
BOB_BOB_BOB_17 天前
【ee类保研面试】数学类---概率论
面试·职场和发展·概率论·保研