NLP--朴素贝叶斯

1.在很多时候,我们不能像抛硬币一样通过客观性的方式来得到正反面的概率,而是常常遇到主观性的概率时,我们就不得不提及贝叶斯学派。贝叶斯概率是一种对概率的解释。概率被解释为代表一种具备某种知识状态的合理预期。因此,贝叶斯原理更符合人们的认知习惯。

2.朴素表示假设样本的特诊之间是相互独立的。它最大的一个优势是基于少量数据就可以进行训练。

3.分类

(1)多项式朴素贝叶斯适合特诊属于类别的数据。

(2)高斯朴素贝叶斯适合特征属于连续性的数据,其中假设不同特诊下的数据符合正态分布。

(3)伯努利朴素贝叶斯假设特征数据服从于0,1二分类的情况。

相关推荐
不懒不懒17 分钟前
【线性 VS 逻辑回归:一篇讲透两种核心回归模型】
人工智能·机器学习
冰西瓜60035 分钟前
从项目入手机器学习——(四)特征工程(简单特征探索)
人工智能·机器学习
丝斯20111 小时前
AI学习笔记整理(66)——多模态大模型MOE-LLAVA
人工智能·笔记·学习
小鸡吃米…2 小时前
机器学习中的代价函数
人工智能·python·机器学习
军军君012 小时前
Three.js基础功能学习十三:太阳系实例上
前端·javascript·vue.js·学习·3d·前端框架·three
All The Way North-2 小时前
彻底掌握 RNN(实战):PyTorch API 详解、多层RNN、参数解析与输入机制
pytorch·rnn·深度学习·循环神经网络·参数详解·api详解
bylander3 小时前
【AI学习】TM Forum《Autonomous Networks Implementation Guide》快速理解
人工智能·学习·智能体·自动驾驶网络
xxxmine3 小时前
redis学习
数据库·redis·学习
血小板要健康3 小时前
Java基础常见面试题复习合集1
java·开发语言·经验分享·笔记·面试·学习方法
童话名剑4 小时前
情感分类与词嵌入除偏(吴恩达深度学习笔记)
笔记·深度学习·分类