[每日一练]各赛事的用户注册率

该题目来自力扣

1633. 各赛事的用户注册率 - 力扣(LeetCode)

题目要求:

用户表: Users

复制代码
+-------------+---------+
| Column Name | Type    |
+-------------+---------+
| user_id     | int     |
| user_name   | varchar |
+-------------+---------+
user_id 是该表的主键(具有唯一值的列)。
该表中的每行包括用户 ID 和用户名。

注册表: Register

复制代码
+-------------+---------+
| Column Name | Type    |
+-------------+---------+
| contest_id  | int     |
| user_id     | int     |
+-------------+---------+
(contest_id, user_id) 是该表的主键(具有唯一值的列的组合)。
该表中的每行包含用户的 ID 和他们注册的赛事。

编写解决方案统计出各赛事的用户注册百分率,保留两位小数。

返回的结果表按 percentage降序 排序,若相同则按 contest_id升序排序。

返回结果如下示例所示。

示例 1:

复制代码
输入:
Users 表:
+---------+-----------+
| user_id | user_name |
+---------+-----------+
| 6       | Alice     |
| 2       | Bob       |
| 7       | Alex      |
+---------+-----------+

Register 表:
+------------+---------+
| contest_id | user_id |
+------------+---------+
| 215        | 6       |
| 209        | 2       |
| 208        | 2       |
| 210        | 6       |
| 208        | 6       |
| 209        | 7       |
| 209        | 6       |
| 215        | 7       |
| 208        | 7       |
| 210        | 2       |
| 207        | 2       |
| 210        | 7       |
+------------+---------+
输出:
+------------+------------+
| contest_id | percentage |
+------------+------------+
| 208        | 100.0      |
| 209        | 100.0      |
| 210        | 100.0      |
| 215        | 66.67      |
| 207        | 33.33      |
+------------+------------+
解释:
所有用户都注册了 208、209 和 210 赛事,因此这些赛事的注册率为 100% ,我们按 contest_id 的降序排序加入结果表中。
Alice 和 Alex 注册了 215 赛事,注册率为 ((2/3) * 100) = 66.67%
Bob 注册了 207 赛事,注册率为 ((1/3) * 100) = 33.33%

思路解释:

首先我们并不用将两个表结合,只需要对Register表按照contest_id进行分组即可,之后将分组后的user_id列除以Users表的总人数再*100即可。

代码实现:

python 复制代码
import pandas as pd

def users_percentage(users: pd.DataFrame, register: pd.DataFrame) -> pd.DataFrame:
    data=register.groupby('contest_id')['user_id'].count().reset_index()
    data['percentage']=(data['user_id']*100/users['user_id'].count()).round(2)
    return data[['contest_id','percentage']].sort_values(['percentage','contest_id'],ascending=[False,True])

代码简化思考:

有了以上的推理过程,如何简化代码,使它看起来更简洁呢?

我们可以利用agg聚合函数和lambda遍历函数组合来实现:

python 复制代码
import pandas as pd

def users_percentage(users: pd.DataFrame, register: pd.DataFrame) -> pd.DataFrame:
    data=register.groupby('contest_id').agg({'user_id':lambda x:(x.count()*100/users['user_id'].count()).round(2)}).reset_index().rename(columns={'user_id':'percentage'})
    return data.sort_values(['percentage','contest_id'],ascending=[False,True])
相关推荐
啊阿狸不会拉杆6 分钟前
《机器学习导论》第3章 -贝叶斯决策理论
人工智能·python·算法·机器学习·numpy·深度优先·贝叶斯决策理论
阿蔹6 分钟前
力扣面试题二Python
python·算法·leetcode·职场和发展
2501_9421917716 分钟前
汽车脏污检测与识别 - YOLO11-C3k2-PSFSConv优化模型详解
python
喵手19 分钟前
Python爬虫实战:构建“下载-去重-入库”的图片采集流水线(附SQLite持久化存储)!
爬虫·python·爬虫实战·零基础python爬虫教学·sqlite持久化存储·采集图片·采集图片存储入库
爱内卷的学霸一枚20 分钟前
Python并发编程与性能优化实战指南
开发语言·python·性能优化
Blurpath住宅代理23 分钟前
如何在Python爬虫中使用代理IP?从配置到轮换的完整指南
网络·爬虫·python·住宅ip·住宅代理·动态住宅代理
DeniuHe25 分钟前
Pytorch中统计学相关的函数
pytorch·python·深度学习
newbiai26 分钟前
电商直播AI视频生成工具哪个方便快捷?
人工智能·python·音视频
ID_1800790547328 分钟前
Python结合淘宝关键词API进行商品数据挖掘与
开发语言·python·数据挖掘
梦因you而美28 分钟前
Python win32com操作Excel:彻底禁用链接更新及各类弹窗(实测有效)
python·excel·win32com·禁用链接更新·excel弹框