[每日一练]各赛事的用户注册率

该题目来自力扣

1633. 各赛事的用户注册率 - 力扣(LeetCode)

题目要求:

用户表: Users

复制代码
+-------------+---------+
| Column Name | Type    |
+-------------+---------+
| user_id     | int     |
| user_name   | varchar |
+-------------+---------+
user_id 是该表的主键(具有唯一值的列)。
该表中的每行包括用户 ID 和用户名。

注册表: Register

复制代码
+-------------+---------+
| Column Name | Type    |
+-------------+---------+
| contest_id  | int     |
| user_id     | int     |
+-------------+---------+
(contest_id, user_id) 是该表的主键(具有唯一值的列的组合)。
该表中的每行包含用户的 ID 和他们注册的赛事。

编写解决方案统计出各赛事的用户注册百分率,保留两位小数。

返回的结果表按 percentage降序 排序,若相同则按 contest_id升序排序。

返回结果如下示例所示。

示例 1:

复制代码
输入:
Users 表:
+---------+-----------+
| user_id | user_name |
+---------+-----------+
| 6       | Alice     |
| 2       | Bob       |
| 7       | Alex      |
+---------+-----------+

Register 表:
+------------+---------+
| contest_id | user_id |
+------------+---------+
| 215        | 6       |
| 209        | 2       |
| 208        | 2       |
| 210        | 6       |
| 208        | 6       |
| 209        | 7       |
| 209        | 6       |
| 215        | 7       |
| 208        | 7       |
| 210        | 2       |
| 207        | 2       |
| 210        | 7       |
+------------+---------+
输出:
+------------+------------+
| contest_id | percentage |
+------------+------------+
| 208        | 100.0      |
| 209        | 100.0      |
| 210        | 100.0      |
| 215        | 66.67      |
| 207        | 33.33      |
+------------+------------+
解释:
所有用户都注册了 208、209 和 210 赛事,因此这些赛事的注册率为 100% ,我们按 contest_id 的降序排序加入结果表中。
Alice 和 Alex 注册了 215 赛事,注册率为 ((2/3) * 100) = 66.67%
Bob 注册了 207 赛事,注册率为 ((1/3) * 100) = 33.33%

思路解释:

首先我们并不用将两个表结合,只需要对Register表按照contest_id进行分组即可,之后将分组后的user_id列除以Users表的总人数再*100即可。

代码实现:

python 复制代码
import pandas as pd

def users_percentage(users: pd.DataFrame, register: pd.DataFrame) -> pd.DataFrame:
    data=register.groupby('contest_id')['user_id'].count().reset_index()
    data['percentage']=(data['user_id']*100/users['user_id'].count()).round(2)
    return data[['contest_id','percentage']].sort_values(['percentage','contest_id'],ascending=[False,True])

代码简化思考:

有了以上的推理过程,如何简化代码,使它看起来更简洁呢?

我们可以利用agg聚合函数和lambda遍历函数组合来实现:

python 复制代码
import pandas as pd

def users_percentage(users: pd.DataFrame, register: pd.DataFrame) -> pd.DataFrame:
    data=register.groupby('contest_id').agg({'user_id':lambda x:(x.count()*100/users['user_id'].count()).round(2)}).reset_index().rename(columns={'user_id':'percentage'})
    return data.sort_values(['percentage','contest_id'],ascending=[False,True])
相关推荐
2501_944452232 小时前
字数统计 Cordova 与 OpenHarmony 混合开发实战
python
骚戴3 小时前
2025 Python AI 实战:零基础调用 LLM API 开发指南
人工智能·python·大模型·llm·api·ai gateway
kobe_OKOK_3 小时前
tdeinge REST API 客户端
python·缓存·django
io_T_T3 小时前
Python os库 os.walk使用(详细教程、带实践)
python
TonyLee0174 小时前
使用argparse模块以及shell脚本
python
Blossom.1184 小时前
Prompt工程与思维链优化实战:从零构建动态Few-Shot与CoT推理引擎
人工智能·分布式·python·智能手机·django·prompt·边缘计算
love530love6 小时前
Windows 11 下 Z-Image-Turbo 完整部署与 Flash Attention 2.8.3 本地编译复盘
人工智能·windows·python·aigc·flash-attn·z-image·cuda加速
MediaTea6 小时前
Python:模块 __dict__ 详解
开发语言·前端·数据库·python
jarreyer6 小时前
python,numpy,pandas和matplotlib版本对应关系
python·numpy·pandas
代码or搬砖7 小时前
HashMap源码
开发语言·python·哈希算法