OpenCV学习(4.8) 图像金字塔

1.目的

在这一章当中,

  • 我们将了解图像金字塔。
  • 我们将使用图像金字塔创建一个新的水果,"Orapple"
  • 我们将看到这些功能: cv.pyrUp()cv.pyrDown()

在通常情况下我们使用大小恒定的图像。但在某些情况下,我们需要使用不同分辨率的同幅图像。例如,在搜索图像中的某些内容如脸部信息时,并不确定该内容在图像中占据的大小。在这种情况下,我们需要创建一组不同分辨率的相同图像,并在所有图像中搜索该内容。这些不同分辨率的图像被称为图像金字塔(因为当它们堆叠排列时,底部为最高分辨率图像而顶部为最低分辨率图像,看起来像金字塔)。

图像金字塔有两种: 1)高斯金字塔 和 2)拉普拉斯金字塔

通过去除较低级别图像(较高分辨率)中的连续行和列来形成高斯金字塔中的较高级别图像(较低分辨率)。较高级别图像的每个像素值由低一级别图像的 5 个像素值高斯加权得到,由此图像面积减少到原来的四分之一。这些图像被称为 Octave(组)。当我们在金字塔中上升时(即分辨率降低),重复相似的操作。同理,在金字塔中下降时,每个级别的图像面积大小为上一级的四倍。我们可以使用 cv.pyrDown()cv.pyrUp() 函数获取高斯金字塔。

2. 图像金字塔

python 复制代码
import cv2
import numpy as np
from matplotlib import pyplot as plt

# 读取原始图像
image = cv2.imread(r'D:\study\EmotionDetection_RealTime-master\data\data\te\13.jpg', cv2.IMREAD_COLOR)

# 创建图像金字塔
# 这里我们将创建三个层次的金字塔
pyramid_images = [image]
cv2.imshow('image',image)
downscaled_image = cv2.pyrDown(image)
cv2.imshow('downscaled_image',downscaled_image)

upsampled_image = cv2.pyrUp(image)

cv2.imshow('upsampled_image',upsampled_image)


# 等待按键后关闭所有窗口
cv2.waitKey(0)
cv2.destroyAllWindows()
2.1 cv2.pyrDown()

cv2.pyrDown()函数用于对图像进行下采样,即减少图像的分辨率。它通常用于创建图像金字塔的较低层次。下采样的具体过程是:

  1. 对图像进行高斯模糊。
  2. 将模糊后的图像沿水平方向和垂直方向各减半。

这样,原始图像的分辨率被降低了一半。

2.2 cv2.pyrUp()

cv2.pyrUp()函数用于对图像进行上采样,即增加图像的分辨率。它通常用于创建图像金字塔的较高层次。上采样的具体过程是:

  1. 将图像复制到一个新的尺寸更大的图像中。
  2. 在新图像的边缘填充零。
  3. 对新图像进行高斯模糊。

这样,原始图像的分辨率被提高了一倍。

原始图像的分辨率通常指的是图像在水平和垂直方向上的像素数量。这是图像的一个重要属性,因为它决定了图像的清晰度和细节水平。

例如,一个分辨率为1024x768的图像意味着图像在水平方向上有1024个像素,在垂直方向上有768个像素。这意味着图像的总面积是786432个像素(1024x768)。

分辨率通常以像素为单位表示,但也可以用其他单位,如英寸(inches)或厘米(centimeters)。在这种情况下,分辨率指的是每英寸或每厘米的像素数量。例如,一个分辨率为300dpi(dots per inch)的图像意味着每英寸有300个像素。

相关推荐
天水幼麟1 小时前
python学习笔记(深度学习)
笔记·python·学习
巴里巴气1 小时前
安装GPU版本的Pytorch
人工智能·pytorch·python
「、皓子~1 小时前
后台管理系统的诞生 - 利用AI 1天完成整个后台管理系统的微服务后端+前端
前端·人工智能·微服务·小程序·go·ai编程·ai写作
you45802 小时前
小程序学习笔记:使用 MobX 实现全局数据共享,实例创建、计算属性与 Actions 方法
笔记·学习·小程序
说私域2 小时前
基于开源AI智能名片链动2+1模式S2B2C商城小程序的抖音渠道力拓展与多渠道利润增长研究
人工智能·小程序·开源
笑衬人心。2 小时前
初学Spring AI 笔记
人工智能·笔记·spring
luofeiju2 小时前
RGB下的色彩变换:用线性代数解构色彩世界
图像处理·人工智能·opencv·线性代数
测试者家园2 小时前
基于DeepSeek和crewAI构建测试用例脚本生成器
人工智能·python·测试用例·智能体·智能化测试·crewai
张较瘦_2 小时前
[论文阅读] 人工智能 + 软件工程 | Call Me Maybe:用图神经网络增强JavaScript调用图构建
论文阅读·人工智能·软件工程
大模型真好玩2 小时前
准确率飙升!Graph RAG如何利用知识图谱提升RAG答案质量(四)——微软GraphRAG代码实战
人工智能·python·mcp