yolov8摔倒检测(包含数据集+训练好的模型)

基于先进的YOLOv8模型,实现了一套高效可靠的人体摔倒检测系统。YOLOv8作为YOLO系列的最新成员,以其卓越的检测速度和准确性,在计算机视觉领域尤其是目标检测任务中表现出色。本系统不仅能够实时处理视频流或监控画面,还能对静态图像进行分析,识别出是否有人发生摔倒行为。

该项目主要包括以下几个核心环节:

  1. 数据准备:收集并标注包含摔倒动作的图像或视频数据,建立一个高质量的训练集和验证集。数据应涵盖不同年龄、服装、环境光照条件下的摔倒场景,确保模型泛化能力强。
  2. 模型训练:使用YOLOv8的预训练权重进行微调,针对摔倒检测任务优化网络。这一步骤涉及调整超参数、损失函数配置等,以适应特定的检测需求。
  3. 姿势估计:结合YOLOv8-Pose模型,进行人体关键点检测,分析人体姿态,这是判断是否摔倒的关键步骤。
  4. 摔倒判定逻辑:基于关键点信息,设计算法逻辑来判断个体是否处于摔倒状态。通常,这涉及到检查人体的关键部位(如头部、肩部、臀部等)之间的相对位置和角度。
  5. 系统集成:开发用户界面,提供图片/视频上传、实时摄像头输入等功能,并展示检测结果。系统还可能包含报警机制,当检测到摔倒事件时自动触发警报。

关键代码部分:

复制代码
import cv2
from ultralytics import YOLO
from yolov8_pose_utils import draw_poses, detect_fall # 假设存在这样的实用函数

# 加载YOLOv8-Pose模型
model = YOLO('yolov8n-pose.pt') # 使用YOLOv8的姿势估计模型

# 视频处理部分
video_path = 'path_to_your_video.mp4'
cap = cv2.VideoCapture(video_path)

while True:
    ret, frame = cap.read()
    if not ret:
        break
    
    # 使用YOLOv8进行人体关键点检测
    results = model(frame)[0]
    
    # 绘制姿态关键点
    frame = draw_poses(frame, results.keypoints)
    
    # 判断是否发生摔倒
    fall_detected = detect_fall(results.keypoints)
    if fall_detected:
        print("检测到摔倒!")
        # 这里可以添加报警或其他响应逻辑
        
    cv2.imshow('Fall Detection', frame)
    
    if cv2.waitKey(1) & 0xFF == ord('q'):
        break

cap.release()
cv2.destroyAllWindows()

内负有超详细的数据集,项目源码及人性化的美观的GUI界面。

相关推荐
Dev7z6 小时前
服装厂废料(边角料)YOLO格式分类检测数据集
yolo·服装厂废料·边角料
智驱力人工智能7 小时前
守护流动的规则 基于视觉分析的穿越导流线区检测技术工程实践 交通路口导流区穿越实时预警技术 智慧交通部署指南
人工智能·opencv·安全·目标检测·计算机视觉·cnn·边缘计算
黑客思维者9 小时前
机器学习071:深度学习【卷积神经网络】目标检测“三剑客”:YOLO、SSD、Faster R-CNN对比
深度学习·yolo·目标检测·机器学习·cnn·ssd·faster r-cnn
棒棒的皮皮11 小时前
【深度学习】YOLO 模型部署全攻略(本地 / 嵌入式 / 移动端)
人工智能·深度学习·yolo·计算机视觉
棒棒的皮皮11 小时前
【深度学习】YOLO模型速度优化全攻略(模型 / 推理 / 硬件三层维度)
人工智能·深度学习·yolo·计算机视觉
棒棒的皮皮15 小时前
【深度学习】YOLO模型精度优化 Checklist
人工智能·深度学习·yolo·计算机视觉
微尘hjx15 小时前
【数据集 01】家庭室内烟火数据集(按比例划分训练、验证、测试)包含训练好的yolo11/yolov8模型
深度学习·yolov8·yolo11·训练模型·烟火数据集·家庭火灾数据集·火灾数据集
q_302381955617 小时前
Atlas200DK 部署 yolov11 调用海康威视摄像头实现实时目标检测
人工智能·yolo·目标检测
duyinbi751719 小时前
【深度学习】使用YOLOv8-MFMMAFPN进行泡沫检测的完整实现
人工智能·深度学习·yolo
MF_AI19 小时前
苹果病害检测识别数据集:1w+图像,5类,yolo标注
图像处理·人工智能·深度学习·yolo·计算机视觉