[数据集][目标检测]高空抛物数据集VOC+YOLO格式259张+6段视频+yolov8模型+探讨

这个是从6段简短抛物视频里面截取的259张图片用labelImg进行标注得到提供voc和yolo格式以供大家训练和研究。目录我已经提供了yolov8s训练好的模型和训练日志,如果不想训练的可以直接用我这个模型即可,选择使用best.pt或last.pt即可。目录结构:

复制代码
----yolov8-paowu\
    |----data\
    |    |----video\
    |    |    |----1.mp4
    |    |    |----2.mp4
    |    |    |----3.mp4
    |    |    |----4.mp4
    |    |    |----5.mp4
    |    |    |----6.mp4
    |    |----VOC2012\
    |    |    |----Annotations\
    |    |    |    |----paowu_1.xml
    |    |    |    |----paowu_10.xml
    |    |    |    |----paowu_100.xml
    |    |    |    |----more
    |    |    |----JPEGImages\
    |    |    |    |----paowu_1.jpg
    |    |    |    |----paowu_10.jpg
    |    |    |    |----paowu_100.jpg
    |    |    |    |----paowu_101.jpg
    |    |    |    |----more
    |    |    |----labels\
    |    |    |    |----classes.txt
    |    |    |    |----paowu_1.txt
    |    |    |    |----paowu_10.txt
    |    |    |    |----paowu_100.txt
    |    |    |    |----more
    |----train\
    |    |----args.yaml
    |    |----confusion_matrix.png
    |    |----confusion_matrix_normalized.png
    |    |----events.out.tfevents.1717627006.jupyter-391641-6894711.6128.0
    |    |----F1_curve.png
    |    |----labels.jpg
    |    |----labels_correlogram.jpg
    |    |----PR_curve.png
    |    |----P_curve.png
    |    |----results.csv
    |    |----results.png
    |    |----R_curve.png
    |    |----train_batch0.jpg
    |    |----train_batch1.jpg
    |    |----train_batch1520.jpg
    |    |----train_batch1521.jpg
    |    |----train_batch1522.jpg
    |    |----train_batch2.jpg
    |    |----val_batch0_labels.jpg
    |    |----val_batch0_pred.jpg
    |    |----weights\
    |    |    |----best.pt
    |    |    |----last.pt
    |----使用说明.txt

这里解释一下为什么要做这个数据集。首先可以肯定的是如果做商业化落地要考虑很多因素,使用目标检测做通用型高空抛物其实不太好,原因是抛出物体非常多根本不能仅仅靠目标检测实现。光抛物成千上万种你不可能都打上标签,而且还有个问题就是误检测问题也不好解决。如果你只想用目标检测检测大物件抛物也许目标检测算法还是可以用的。随着科技的技术发展,说不定后面还有更厉害目标检测框架出现,可能用目标检测做高空抛物成为现实。所以这个数据集对于想商业化落地的研究人员可以说是纯粹是lese,但是万事不能说毫无用处,这个还有一些其他使用价值。

第一,如果您只想要做视频演示只是呈现一种效果,那么这个数据集+模型+视频可能会帮到您

第二,如果您只想用作课程作业或者研究着玩一玩,那么这个数据集+模型+视频也可能会帮到您

第三,如果您只想要视频文件那么我这边也提供了,视频文件为原生文件,不是检测过的结果文件,您可以用这些视频去检测自己实际高空抛物算法。

下面提供yolov8测试命令和环境:

测试环境:

ultralytics==8.2.2

torch==1.9.0+cu111

下载文件后并安装好yolov8环境,切换到yolov8-paowu目录下面,执行

复制代码
yolo task=detect mode=predict model=train/weights/best.pt source=data/video/1.mp4 show=true

这里提供数据集(VOC+YOLO)+6段高空模拟抛物视频+yolov8训练模型和日志下载地址:

https://download.csdn.net/download/FL1623863129/89402730

相关推荐
AndrewHZ1 小时前
【图像处理基石】什么是油画感?
图像处理·人工智能·算法·图像压缩·视频处理·超分辨率·去噪算法
Robot2512 小时前
「华为」人形机器人赛道投资首秀!
大数据·人工智能·科技·microsoft·华为·机器人
J先生x2 小时前
【IP101】图像处理进阶:从直方图均衡化到伽马变换,全面掌握图像增强技术
图像处理·人工智能·学习·算法·计算机视觉
Narutolxy5 小时前
大模型数据分析破局之路20250512
人工智能·chatgpt·数据分析
浊酒南街5 小时前
TensorFlow中数据集的创建
人工智能·tensorflow
2301_787552876 小时前
console-chat-gpt开源程序是用于 AI Chat API 的 Python CLI
人工智能·python·gpt·开源·自动化
layneyao6 小时前
AI与自然语言处理(NLP):从BERT到GPT的演进
人工智能·自然语言处理·bert
jndingxin7 小时前
OpenCV 的 CUDA 模块中用于将多个单通道的 GpuMat 图像合并成一个多通道的图像 函数cv::cuda::merge
人工智能·opencv·计算机视觉
格林威7 小时前
Baumer工业相机堡盟工业相机的工业视觉中为什么偏爱“黑白相机”
开发语言·c++·人工智能·数码相机·计算机视觉
灬0灬灬0灬8 小时前
深度学习---常用优化器
人工智能·深度学习