torch.squeeze() dim=1 dim=-1 dim=2

对数据的维度进行压缩

使用方式:torch.squeeze(input, dim=None, out=None)

将输入张量形状中的1 去除并返回。 如果输入是形如(A×1×B×1×C×1×D),那么输出形状就为: (A×B×C×D)

当给定dim时,那么挤压操作只在给定维度上。例如,输入形状为: (A×1×B), squeeze(input, 0) 将会保持张量不变,只有用 squeeze(input, 1),形状会变成 (A×B)。

注意:

如果dim指定的维度的值为1

第一种情况

python 复制代码
import torch

x = torch.rand(2,1,1,3,1,4)
print('=======x=========')
print(x.shape)
out_1 = torch.squeeze(x, dim=1)
print('=======out_1=========')
print(out_1.shape)
# =======x=========
# torch.Size([2, 1, 1, 3, 1, 4])
# =======out_1=========
# torch.Size([2, 1, 3, 1, 4])

第二种情况

python 复制代码
x = torch.rand(1,2,1,1,3,1,4)
print('=======x=========')
print(x.shape)
out_2 = torch.squeeze(x, dim=1)
print('=======out_2=========')
print(out_2.shape)
# =======x=========
# torch.Size([1, 2, 1, 1, 3, 1, 4])
# =======out_2=========
# torch.Size([1, 2, 1, 1, 3, 1, 4])

第三种情况

python 复制代码
x = torch.rand(1,1,2,1,1,3,1,4)
print('=======x=========')
print(x.shape)
out_3 = torch.squeeze(x, dim=1)
print('=======out_3=========')
print(out_3.shape)
# =======x=========
# # torch.Size([1, 1, 2, 1, 1, 3, 1, 4])
# # =======out_3=========
# # torch.Size([1, 2, 1, 1, 3, 1, 4])

如果dim指定的维度的值为-1

第一种情况 如果dim指定的维度的值为-1

python 复制代码
import torch

x = torch.rand(2,1,1,3,1,4)
print('=======x=========')
print(x.shape)
out_1 = torch.squeeze(x, dim=-1)
print('=======out_1=========')
print(out_1.shape)
# =======x=========
# torch.Size([2, 1, 1, 3, 1, 4])
# =======out_1=========
# torch.Size([2, 1, 1, 3, 1, 4])

第二种情况 如果dim指定的维度的值为-1

python 复制代码
x = torch.rand(2,1,1,3,1,4,1)
print('=======x=========')
print(x.shape)
out_2 = torch.squeeze(x, dim=-1)
print('=======out_2=========')
print(out_2.shape)
# =======x=========
# torch.Size([2, 1, 1, 3, 1, 4, 1])
# =======out_2=========
# torch.Size([2, 1, 1, 3, 1, 4])

第三种情况 如果dim指定的维度的值为-1

python 复制代码
x = torch.rand(2,1,1,3,1,4,1,1)
print('=======x=========')
print(x.shape)
out_3 = torch.squeeze(x, dim=-1)
print('=======out_3=========')
print(out_3.shape)
# =======x=========
# torch.Size([2, 1, 1, 3, 1, 4, 1, 1])
# =======out_3=========
# torch.Size([2, 1, 1, 3, 1, 4, 1])

如果dim指定的维度的值为2

python 复制代码
import torch

x = torch.rand(2,1,3,1,4)
print('=======x=========')
print(x.shape)
out_1 = torch.squeeze(x, dim=2)
print('=======out_1=========')
print(out_1.shape)
# =======x=========
# torch.Size([2, 1, 3, 1, 4])
# =======out_1=========
# torch.Size([2, 1, 3, 1, 4])

x = torch.rand(2,1,1,3,1,4)
print('=======x=========')
print(x.shape)
out_2 = torch.squeeze(x, dim=2)
print('=======out_2=========')
print(out_2.shape)
# =======x=========
# torch.Size([2, 1, 1, 3, 1, 4])
# =======out_2=========
# torch.Size([2, 1, 3, 1, 4])


x = torch.rand(1,2,1,1,3,1,1,4)
print('=======x=========')
print(x.shape)
out_3 = torch.squeeze(x, dim=2)
print('=======out_3=========')
print(out_3.shape)
# =======x=========
# torch.Size([1, 2, 1, 1, 3, 1, 1, 4])
# =======out_3=========
# torch.Size([1, 2, 1, 3, 1, 1, 4])
相关推荐
技术与健康3 小时前
LLM实践系列:利用LLM重构数据科学流程03- LLM驱动的数据探索与清洗
大数据·人工智能·重构
张小九994 小时前
Foldseek快速蛋白质结构比对
人工智能
云卓SKYDROID5 小时前
无人机延时模块技术难点解析
人工智能·无人机·高科技·云卓科技·延迟摄像
神齐的小马5 小时前
机器学习 [白板推导](十三)[条件随机场]
人工智能·机器学习
荼蘼5 小时前
CUDA安装,pytorch库安装
人工智能·pytorch·python
@Wufan6 小时前
【机器学习】7 Linear regression
人工智能·机器学习·线性回归
cxr8286 小时前
自动化知识工作AI代理的工程与产品实现
运维·人工智能·自动化
whaosoft-1437 小时前
51c自动驾驶~合集18
人工智能
即兴小索奇7 小时前
2025年AI Agent规模化落地:企业级市场年增超60%,重构商业作业流程新路径
人工智能·ai·商业·ai商业洞察·即兴小索奇
ReedFoley7 小时前
【笔记】动手学Ollama 第七章 应用案例1 搭建本地AI Copilot编程助手
人工智能·笔记·copilot