torch.squeeze() dim=1 dim=-1 dim=2

对数据的维度进行压缩

使用方式:torch.squeeze(input, dim=None, out=None)

将输入张量形状中的1 去除并返回。 如果输入是形如(A×1×B×1×C×1×D),那么输出形状就为: (A×B×C×D)

当给定dim时,那么挤压操作只在给定维度上。例如,输入形状为: (A×1×B), squeeze(input, 0) 将会保持张量不变,只有用 squeeze(input, 1),形状会变成 (A×B)。

注意:

如果dim指定的维度的值为1

第一种情况

python 复制代码
import torch

x = torch.rand(2,1,1,3,1,4)
print('=======x=========')
print(x.shape)
out_1 = torch.squeeze(x, dim=1)
print('=======out_1=========')
print(out_1.shape)
# =======x=========
# torch.Size([2, 1, 1, 3, 1, 4])
# =======out_1=========
# torch.Size([2, 1, 3, 1, 4])

第二种情况

python 复制代码
x = torch.rand(1,2,1,1,3,1,4)
print('=======x=========')
print(x.shape)
out_2 = torch.squeeze(x, dim=1)
print('=======out_2=========')
print(out_2.shape)
# =======x=========
# torch.Size([1, 2, 1, 1, 3, 1, 4])
# =======out_2=========
# torch.Size([1, 2, 1, 1, 3, 1, 4])

第三种情况

python 复制代码
x = torch.rand(1,1,2,1,1,3,1,4)
print('=======x=========')
print(x.shape)
out_3 = torch.squeeze(x, dim=1)
print('=======out_3=========')
print(out_3.shape)
# =======x=========
# # torch.Size([1, 1, 2, 1, 1, 3, 1, 4])
# # =======out_3=========
# # torch.Size([1, 2, 1, 1, 3, 1, 4])

如果dim指定的维度的值为-1

第一种情况 如果dim指定的维度的值为-1

python 复制代码
import torch

x = torch.rand(2,1,1,3,1,4)
print('=======x=========')
print(x.shape)
out_1 = torch.squeeze(x, dim=-1)
print('=======out_1=========')
print(out_1.shape)
# =======x=========
# torch.Size([2, 1, 1, 3, 1, 4])
# =======out_1=========
# torch.Size([2, 1, 1, 3, 1, 4])

第二种情况 如果dim指定的维度的值为-1

python 复制代码
x = torch.rand(2,1,1,3,1,4,1)
print('=======x=========')
print(x.shape)
out_2 = torch.squeeze(x, dim=-1)
print('=======out_2=========')
print(out_2.shape)
# =======x=========
# torch.Size([2, 1, 1, 3, 1, 4, 1])
# =======out_2=========
# torch.Size([2, 1, 1, 3, 1, 4])

第三种情况 如果dim指定的维度的值为-1

python 复制代码
x = torch.rand(2,1,1,3,1,4,1,1)
print('=======x=========')
print(x.shape)
out_3 = torch.squeeze(x, dim=-1)
print('=======out_3=========')
print(out_3.shape)
# =======x=========
# torch.Size([2, 1, 1, 3, 1, 4, 1, 1])
# =======out_3=========
# torch.Size([2, 1, 1, 3, 1, 4, 1])

如果dim指定的维度的值为2

python 复制代码
import torch

x = torch.rand(2,1,3,1,4)
print('=======x=========')
print(x.shape)
out_1 = torch.squeeze(x, dim=2)
print('=======out_1=========')
print(out_1.shape)
# =======x=========
# torch.Size([2, 1, 3, 1, 4])
# =======out_1=========
# torch.Size([2, 1, 3, 1, 4])

x = torch.rand(2,1,1,3,1,4)
print('=======x=========')
print(x.shape)
out_2 = torch.squeeze(x, dim=2)
print('=======out_2=========')
print(out_2.shape)
# =======x=========
# torch.Size([2, 1, 1, 3, 1, 4])
# =======out_2=========
# torch.Size([2, 1, 3, 1, 4])


x = torch.rand(1,2,1,1,3,1,1,4)
print('=======x=========')
print(x.shape)
out_3 = torch.squeeze(x, dim=2)
print('=======out_3=========')
print(out_3.shape)
# =======x=========
# torch.Size([1, 2, 1, 1, 3, 1, 1, 4])
# =======out_3=========
# torch.Size([1, 2, 1, 3, 1, 1, 4])
相关推荐
夫唯不争,故无尤也13 小时前
在 PyTorch 里,torch.nn 和 torch.nn.functional 到底什么关系?
人工智能·pytorch·python
CodeCaptain13 小时前
【无标题】
人工智能·经验分享·ai·ai编程
TYUT_xiaoming13 小时前
零样本目标检测及分割模型
人工智能·目标检测·计算机视觉
计算机程序设计小李同学13 小时前
森林防火航空巡护任务管理系统
java·vue.js·人工智能·分类·数据挖掘
AIGC合规助手13 小时前
最新I江苏算法、大模型备案攻略+补贴政策汇总
大数据·人工智能·安全·语言模型·aigc
心态还需努力呀13 小时前
从单体到分布式:一套 Pulsar 驱动的 AI Infra 实战框架
人工智能·分布式
wiss6613 小时前
国产知识文档系统深度测评:功能、优势与选型指南
大数据·人工智能·企业知识管理·文件数据利用·电子文档管理系统
Akamai中国13 小时前
分布式边缘推理正在改变一切
人工智能·分布式·云计算·云服务
进击切图仔13 小时前
具身智能相关常用工具代码
人工智能
木卫四科技13 小时前
【CES 2026 】木卫四科技于CES 2026发布“安心用车助手”,以AI重塑驾乘信心
人工智能·科技·智能体·智能座舱·汽车安心用车助手·智能座舱安全