计算机视觉全系列实战教程:(八)图像变换-点运算、灰度变换、直方图变换

图像变换:点运算、灰度变换、直方图变换

1.点运算

(1)What

通过点运算,输出图像的每个像素的灰度值仅仅取决于输入图像中相对应像素的灰度值。

(2)Why

点运算的作用:实现图像增强的常用方法之一

2.灰度变换

(1)What

灰度变换是一种点运算的具体形式,换句话说,灰度变换是点运算的一种运用

(2)Why(作用)

增强对比度,是增强图像的重要手段(途径)和方法

  • 改善图像的质量:显示更多细节,进行对比度拉伸
  • 突出感兴趣的特征:针对图像中感兴趣的区域进行突出或抑制

(3)Which(有哪些灰度变换)

核心:灰度变换函数的不同

  • A.线性灰度变换
    y = k * f(x) + b
    当k>1:对比度将增大
    当k<1:对比度将减小
    当k=1,b!=0:图像整体变亮或变暗
    当k=-1,b=255:图像灰度正好相反
    当k<0,b>0:暗区域变亮,亮区域变暗
  • B.分段线性灰度变换

确定分段函数的三个k值和b值即可实现分段灰度变换效果。

分段线性灰度变换的效果对参数的选取依赖很高,当参数选取不好的时候,不但无法实现增强图像的效果,还可能变得更加糟糕。为此实现自适应选取成为分段线性灰度变换的关键。目前常用的方法有:自适应最小误差法多尺度逼近方法

恒增强率方法等。

  • C.非线性变换-对数变换
    g(x) = c * log(1+f(x))
  • D.非线性变换-反对数变换
    g(x) = ( (f(x)+1)^r -1 ) / f(x)
  • E.非线性变换-幂律变换
    g(x) = c*f(x)^alpha

3.直方图修正

(1)直方图均衡化

直方图均衡化可实现图像的自动增强,但效果不易控制,得到的是全局增强的结果
  • step01:统计每一个灰度级的数量
cpp 复制代码
// 统计输入图像的灰度级数量
std::vector<int> vNk(256, 0);
int iTotal = imDst.total();
for (int i = 0; i < imDst.total(); ++i)
{
	vNk[imDst.data[i]]++;
}
  • step02:求累积分布
cpp 复制代码
// 求累积分布函数
for (int i = 1; i < 256; ++i)
{
	vNk[i] = vNk[i] + vNk[i - 1];
}
  • step03:建立映射关系
cpp 复制代码
// 确定映射关系
std::vector<double> vMPk(256, 0.0);
for (int i = 0; i < 256; ++i)
{
	vMPk[i] = 255.0f * (double)vNk[i] / iTotal;
}
// 重新赋值实现均衡化
for (int i = 0; i < iTotal; ++i)
{
	imDst.data[i] = vMPk[imDst.data[i]];
}

代码汇总如下(可直接使用):

cpp 复制代码
/* 图像均衡化 */
int ImgEqualize(const cv::Mat& imSrc, cv::Mat& imDst) {
	// 对输入的数据进行可靠性判定
	if (imSrc.empty()) return -1;
	// 对输入图像进行灰度化处理
	if (imSrc.channels() == 3)
		cv::cvtColor(imSrc, imDst, cv::COLOR_RGB2GRAY);
	else imDst = imSrc;
	// 统计输入图像的灰度级数量
	std::vector<int> vNk(256, 0);
	int iTotal = imDst.total();
	for (int i = 0; i < imDst.total(); ++i)
	{
		vNk[imDst.data[i]]++;
	}
	// 求累积分布函数
	for (int i = 1; i < 256; ++i)
	{
		vNk[i] = vNk[i] + vNk[i - 1];
	}
	// 确定映射关系
	std::vector<double> vMPk(256, 0.0);
	for (int i = 0; i < 256; ++i)
	{
		vMPk[i] = 255.0f * (double)vNk[i] / iTotal;
	}
	// 重新赋值实现均衡化
	for (int i = 0; i < iTotal; ++i)
	{
		imDst.data[i] = vMPk[imDst.data[i]];
	}

}
相关推荐
kakaZhui5 分钟前
【llm对话系统】大模型源码分析之 LLaMA 位置编码 RoPE
人工智能·深度学习·chatgpt·aigc·llama
struggle20251 小时前
一个开源 GenBI AI 本地代理(确保本地数据安全),使数据驱动型团队能够与其数据进行互动,生成文本到 SQL、图表、电子表格、报告和 BI
人工智能·深度学习·目标检测·语言模型·自然语言处理·数据挖掘·集成学习
佛州小李哥1 小时前
通过亚马逊云科技Bedrock打造自定义AI智能体Agent(上)
人工智能·科技·ai·语言模型·云计算·aws·亚马逊云科技
云空2 小时前
《DeepSeek 网页/API 性能异常(DeepSeek Web/API Degraded Performance):网络安全日志》
运维·人工智能·web安全·网络安全·开源·网络攻击模型·安全威胁分析
AIGC大时代2 小时前
对比DeepSeek、ChatGPT和Kimi的学术写作关键词提取能力
论文阅读·人工智能·chatgpt·数据分析·prompt
山晨啊83 小时前
2025年美赛B题-结合Logistic阻滞增长模型和SIR传染病模型研究旅游可持续性-成品论文
人工智能·机器学习
一水鉴天4 小时前
为AI聊天工具添加一个知识系统 之77 详细设计之18 正则表达式 之5
人工智能·正则表达式
davenian4 小时前
DeepSeek-R1 论文. Reinforcement Learning 通过强化学习激励大型语言模型的推理能力
人工智能·深度学习·语言模型·deepseek
X.AI6664 小时前
【大模型LLM面试合集】大语言模型架构_llama系列模型
人工智能·语言模型·llama
CM莫问4 小时前
什么是门控循环单元?
人工智能·pytorch·python·rnn·深度学习·算法·gru