计算机视觉全系列实战教程:(八)图像变换-点运算、灰度变换、直方图变换

图像变换:点运算、灰度变换、直方图变换

1.点运算

(1)What

通过点运算,输出图像的每个像素的灰度值仅仅取决于输入图像中相对应像素的灰度值。

(2)Why

点运算的作用:实现图像增强的常用方法之一

2.灰度变换

(1)What

灰度变换是一种点运算的具体形式,换句话说,灰度变换是点运算的一种运用

(2)Why(作用)

增强对比度,是增强图像的重要手段(途径)和方法

  • 改善图像的质量:显示更多细节,进行对比度拉伸
  • 突出感兴趣的特征:针对图像中感兴趣的区域进行突出或抑制

(3)Which(有哪些灰度变换)

核心:灰度变换函数的不同

  • A.线性灰度变换
    y = k * f(x) + b
    当k>1:对比度将增大
    当k<1:对比度将减小
    当k=1,b!=0:图像整体变亮或变暗
    当k=-1,b=255:图像灰度正好相反
    当k<0,b>0:暗区域变亮,亮区域变暗
  • B.分段线性灰度变换

确定分段函数的三个k值和b值即可实现分段灰度变换效果。

分段线性灰度变换的效果对参数的选取依赖很高,当参数选取不好的时候,不但无法实现增强图像的效果,还可能变得更加糟糕。为此实现自适应选取成为分段线性灰度变换的关键。目前常用的方法有:自适应最小误差法多尺度逼近方法

恒增强率方法等。

  • C.非线性变换-对数变换
    g(x) = c * log(1+f(x))
  • D.非线性变换-反对数变换
    g(x) = ( (f(x)+1)^r -1 ) / f(x)
  • E.非线性变换-幂律变换
    g(x) = c*f(x)^alpha

3.直方图修正

(1)直方图均衡化

复制代码
直方图均衡化可实现图像的自动增强,但效果不易控制,得到的是全局增强的结果
  • step01:统计每一个灰度级的数量
cpp 复制代码
// 统计输入图像的灰度级数量
std::vector<int> vNk(256, 0);
int iTotal = imDst.total();
for (int i = 0; i < imDst.total(); ++i)
{
	vNk[imDst.data[i]]++;
}
  • step02:求累积分布
cpp 复制代码
// 求累积分布函数
for (int i = 1; i < 256; ++i)
{
	vNk[i] = vNk[i] + vNk[i - 1];
}
  • step03:建立映射关系
cpp 复制代码
// 确定映射关系
std::vector<double> vMPk(256, 0.0);
for (int i = 0; i < 256; ++i)
{
	vMPk[i] = 255.0f * (double)vNk[i] / iTotal;
}
// 重新赋值实现均衡化
for (int i = 0; i < iTotal; ++i)
{
	imDst.data[i] = vMPk[imDst.data[i]];
}

代码汇总如下(可直接使用):

cpp 复制代码
/* 图像均衡化 */
int ImgEqualize(const cv::Mat& imSrc, cv::Mat& imDst) {
	// 对输入的数据进行可靠性判定
	if (imSrc.empty()) return -1;
	// 对输入图像进行灰度化处理
	if (imSrc.channels() == 3)
		cv::cvtColor(imSrc, imDst, cv::COLOR_RGB2GRAY);
	else imDst = imSrc;
	// 统计输入图像的灰度级数量
	std::vector<int> vNk(256, 0);
	int iTotal = imDst.total();
	for (int i = 0; i < imDst.total(); ++i)
	{
		vNk[imDst.data[i]]++;
	}
	// 求累积分布函数
	for (int i = 1; i < 256; ++i)
	{
		vNk[i] = vNk[i] + vNk[i - 1];
	}
	// 确定映射关系
	std::vector<double> vMPk(256, 0.0);
	for (int i = 0; i < 256; ++i)
	{
		vMPk[i] = 255.0f * (double)vNk[i] / iTotal;
	}
	// 重新赋值实现均衡化
	for (int i = 0; i < iTotal; ++i)
	{
		imDst.data[i] = vMPk[imDst.data[i]];
	}

}
相关推荐
white-persist13 分钟前
MCP协议深度解析:AI时代的通用连接器
网络·人工智能·windows·爬虫·python·自动化
新智元14 分钟前
谷歌杀入诺奖神殿,两年三冠五得主!世界TOP3重现贝尔实验室神话
人工智能·openai
StarPrayers.17 分钟前
卷积层(Convolutional Layer)学习笔记
人工智能·笔记·深度学习·学习·机器学习
skywalk816319 分钟前
AutoCoder Nano 是一款轻量级的编码助手, 利用大型语言模型(LLMs)帮助开发者编写, 理解和修改代码。
人工智能
金井PRATHAMA26 分钟前
描述逻辑对人工智能自然语言处理中深层语义分析的影响与启示
人工智能·自然语言处理·知识图谱
却道天凉_好个秋32 分钟前
OpenCV(四):视频采集与保存
人工智能·opencv·音视频
minhuan32 分钟前
构建AI智能体:五十七、LangGraph + Gradio:构建可视化AI工作流的趣味指南
人工智能·语言模型·workflow·langgraph·自定义工作流
WWZZ20251 小时前
ORB_SLAM2原理及代码解析:SetPose() 函数
人工智能·opencv·算法·计算机视觉·机器人·自动驾驶
lisw051 小时前
AIoT(人工智能物联网):融合范式下的技术演进、系统架构与产业变革
大数据·人工智能·物联网·机器学习·软件工程
mtouch3331 小时前
GIS+VR地理信息虚拟现实XR MR AR
大数据·人工智能·ar·无人机·xr·vr·mr