计算机视觉全系列实战教程:(八)图像变换-点运算、灰度变换、直方图变换

图像变换:点运算、灰度变换、直方图变换

1.点运算

(1)What

通过点运算,输出图像的每个像素的灰度值仅仅取决于输入图像中相对应像素的灰度值。

(2)Why

点运算的作用:实现图像增强的常用方法之一

2.灰度变换

(1)What

灰度变换是一种点运算的具体形式,换句话说,灰度变换是点运算的一种运用

(2)Why(作用)

增强对比度,是增强图像的重要手段(途径)和方法

  • 改善图像的质量:显示更多细节,进行对比度拉伸
  • 突出感兴趣的特征:针对图像中感兴趣的区域进行突出或抑制

(3)Which(有哪些灰度变换)

核心:灰度变换函数的不同

  • A.线性灰度变换
    y = k * f(x) + b
    当k>1:对比度将增大
    当k<1:对比度将减小
    当k=1,b!=0:图像整体变亮或变暗
    当k=-1,b=255:图像灰度正好相反
    当k<0,b>0:暗区域变亮,亮区域变暗
  • B.分段线性灰度变换

确定分段函数的三个k值和b值即可实现分段灰度变换效果。

分段线性灰度变换的效果对参数的选取依赖很高,当参数选取不好的时候,不但无法实现增强图像的效果,还可能变得更加糟糕。为此实现自适应选取成为分段线性灰度变换的关键。目前常用的方法有:自适应最小误差法多尺度逼近方法

恒增强率方法等。

  • C.非线性变换-对数变换
    g(x) = c * log(1+f(x))
  • D.非线性变换-反对数变换
    g(x) = ( (f(x)+1)^r -1 ) / f(x)
  • E.非线性变换-幂律变换
    g(x) = c*f(x)^alpha

3.直方图修正

(1)直方图均衡化

复制代码
直方图均衡化可实现图像的自动增强,但效果不易控制,得到的是全局增强的结果
  • step01:统计每一个灰度级的数量
cpp 复制代码
// 统计输入图像的灰度级数量
std::vector<int> vNk(256, 0);
int iTotal = imDst.total();
for (int i = 0; i < imDst.total(); ++i)
{
	vNk[imDst.data[i]]++;
}
  • step02:求累积分布
cpp 复制代码
// 求累积分布函数
for (int i = 1; i < 256; ++i)
{
	vNk[i] = vNk[i] + vNk[i - 1];
}
  • step03:建立映射关系
cpp 复制代码
// 确定映射关系
std::vector<double> vMPk(256, 0.0);
for (int i = 0; i < 256; ++i)
{
	vMPk[i] = 255.0f * (double)vNk[i] / iTotal;
}
// 重新赋值实现均衡化
for (int i = 0; i < iTotal; ++i)
{
	imDst.data[i] = vMPk[imDst.data[i]];
}

代码汇总如下(可直接使用):

cpp 复制代码
/* 图像均衡化 */
int ImgEqualize(const cv::Mat& imSrc, cv::Mat& imDst) {
	// 对输入的数据进行可靠性判定
	if (imSrc.empty()) return -1;
	// 对输入图像进行灰度化处理
	if (imSrc.channels() == 3)
		cv::cvtColor(imSrc, imDst, cv::COLOR_RGB2GRAY);
	else imDst = imSrc;
	// 统计输入图像的灰度级数量
	std::vector<int> vNk(256, 0);
	int iTotal = imDst.total();
	for (int i = 0; i < imDst.total(); ++i)
	{
		vNk[imDst.data[i]]++;
	}
	// 求累积分布函数
	for (int i = 1; i < 256; ++i)
	{
		vNk[i] = vNk[i] + vNk[i - 1];
	}
	// 确定映射关系
	std::vector<double> vMPk(256, 0.0);
	for (int i = 0; i < 256; ++i)
	{
		vMPk[i] = 255.0f * (double)vNk[i] / iTotal;
	}
	// 重新赋值实现均衡化
	for (int i = 0; i < iTotal; ++i)
	{
		imDst.data[i] = vMPk[imDst.data[i]];
	}

}
相关推荐
夏天是冰红茶2 小时前
DINO原理详解
人工智能·深度学习·机器学习
吴佳浩4 小时前
Python入门指南(六) - 搭建你的第一个YOLO检测API
人工智能·后端·python
SHIPKING3935 小时前
【AI应用开发设计指南】基于163邮箱SMTP服务实现验证登录
人工智能
yong99905 小时前
基于SIFT特征提取与匹配的MATLAB图像拼接
人工智能·计算机视觉·matlab
知秋一叶1235 小时前
Miloco 深度打通 Home Assistant,实现设备级精准控制
人工智能·智能家居
春日见5 小时前
在虚拟机上面无法正启动机械臂的控制launch文件
linux·运维·服务器·人工智能·驱动开发·ubuntu
————A6 小时前
强化学习----->轨迹、回报、折扣因子和回合
人工智能·python
CareyWYR6 小时前
每周AI论文速递(251215-251219)
人工智能
weixin_409383126 小时前
在kaggle训练Qwen/Qwen2.5-1.5B-Instruct 通过中二时期qq空间记录作为训练数据 训练出中二的模型为目标 第一次训练 好像太二了
人工智能·深度学习·机器学习·qwen
JoannaJuanCV7 小时前
自动驾驶—CARLA仿真(22)manual_control_steeringwheel demo
人工智能·自动驾驶·pygame·carla