Python爬取与可视化-豆瓣电影数据

引言

在数据科学的学习过程中,数据获取与数据可视化是两项重要的技能。本文将展示如何通过Python爬取豆瓣电影Top250的电影数据,并将这些数据存储到数据库中,随后进行数据分析和可视化展示。这个项目涵盖了从数据抓取、存储到数据可视化的整个过程,帮助大家理解数据科学项目的全流程。

环境配置与准备工作

在开始之前,我们需要确保安装了一些必要的库:

  • urllib:用于发送HTTP请求和获取网页数据
  • BeautifulSoup:用于解析HTML数据
  • pymysql:用于连接和操作MySQL数据库
  • time 和 random:用于添加延迟,防止被目标网站屏蔽
  • pandas:用于数据操作和分析
  • matplotlib 和 seaborn:用于数据可视化

数据爬取

我们将通过Python脚本爬取豆瓣电影Top250的数据。豆瓣Top250电影的页面按25部电影分页展示,我们将遍历这些页面获取电影信息。以下是爬取电影数据的伪代码描述:

  1. 设置数据库连接配置
  2. 定义豆瓣电影URL模板
  3. 创建函数 get_movie_data(start) 用于爬取指定页面的数据
    a. 构造请求URL并发送请求
    b. 解析返回的HTML数据
    c. 提取电影的标题、评分、URL、描述和评论数量等信息
  4. 创建函数 save_to_db(movies) 用于将电影数据保存到数据库
  5. 遍历所有页面,获取电影数据并保存到数据库
  6. 关闭数据库连接

数据分析与可视化

完成数据爬取后,我们将数据从数据库中读取出来,并进行分析和可视化展示。

做出以下图表用来分析:

电影评分分布图:显示了电影评分的分布情况,评分主要集中在8.0到9.0之间。
评分与评论数量关系图:展示了评分与评论数量之间的关系,评论数量较多的电影评分也较高。
电影评分箱线图:展示了电影评分的箱线图,可以看出大部分电影的评分都很高,几乎没有低评分的电影。
热门电影前十排名:展示了评分最高的前十部电影。
评论数量分布图:显示了评论数量的分布情况,大部分电影的评论数量集中在几千到几万之间。
评分与评论数量双轴图:展示了每部电影的评分和评论数量的关系,方便对比。

结果展示

通过这个项目,我们从豆瓣电影网站爬取了Top250的电影数据,并对这些数据进行了可视化展示。我们可以看到,豆瓣电影Top250的评分普遍较高,评分与评论数量之间存在一定的正相关关系。这种数据分析和可视化方法不仅可以应用于电影数据,还可以扩展到其他领域的数据分析中。希望这篇文章对大家有所帮助!

源码

相关推荐
kongba0074 分钟前
EIDE搭配cursor编译GD32的项目 需要的一些c_cpp_properties设置 json文件
c语言·开发语言·json
抹除不掉的轻狂丶6 分钟前
JVM生产环境问题定位与解决实战(三):揭秘Java飞行记录器(JFR)的强大功能
java·开发语言·jvm
Hello.Reader18 分钟前
Rust 中的引用循环与内存泄漏
开发语言·windows·rust
xianwu54318 分钟前
反向代理模块kfj
开发语言·网络·数据库·c++·mysql
EPSDA21 分钟前
网络基础知识
linux·运维·服务器·开发语言·c++
SomeB1oody24 分钟前
【Rust中级教程】2.8. API设计原则之灵活性(flexible) Pt.4:显式析构函数的问题及3种解决方案
开发语言·后端·性能优化·rust
⁤⁢初遇40 分钟前
C语言基本知识------指针(4)
c语言·开发语言
cv操作贼61 小时前
QT 基础知识点
开发语言·qt
半桶水专家1 小时前
c语言中main函数输入参数详解
c语言·开发语言
IT猿手1 小时前
2025最新高维多目标优化:基于城市场景下无人机三维路径规划的导航变量的多目标粒子群优化算法(NMOPSO),MATLAB代码
android·开发语言·算法·机器学习·matlab·无人机