Python爬取与可视化-豆瓣电影数据

引言

在数据科学的学习过程中,数据获取与数据可视化是两项重要的技能。本文将展示如何通过Python爬取豆瓣电影Top250的电影数据,并将这些数据存储到数据库中,随后进行数据分析和可视化展示。这个项目涵盖了从数据抓取、存储到数据可视化的整个过程,帮助大家理解数据科学项目的全流程。

环境配置与准备工作

在开始之前,我们需要确保安装了一些必要的库:

  • urllib:用于发送HTTP请求和获取网页数据
  • BeautifulSoup:用于解析HTML数据
  • pymysql:用于连接和操作MySQL数据库
  • time 和 random:用于添加延迟,防止被目标网站屏蔽
  • pandas:用于数据操作和分析
  • matplotlib 和 seaborn:用于数据可视化

数据爬取

我们将通过Python脚本爬取豆瓣电影Top250的数据。豆瓣Top250电影的页面按25部电影分页展示,我们将遍历这些页面获取电影信息。以下是爬取电影数据的伪代码描述:

  1. 设置数据库连接配置
  2. 定义豆瓣电影URL模板
  3. 创建函数 get_movie_data(start) 用于爬取指定页面的数据
    a. 构造请求URL并发送请求
    b. 解析返回的HTML数据
    c. 提取电影的标题、评分、URL、描述和评论数量等信息
  4. 创建函数 save_to_db(movies) 用于将电影数据保存到数据库
  5. 遍历所有页面,获取电影数据并保存到数据库
  6. 关闭数据库连接

数据分析与可视化

完成数据爬取后,我们将数据从数据库中读取出来,并进行分析和可视化展示。

做出以下图表用来分析:

复制代码
电影评分分布图:显示了电影评分的分布情况,评分主要集中在8.0到9.0之间。
评分与评论数量关系图:展示了评分与评论数量之间的关系,评论数量较多的电影评分也较高。
电影评分箱线图:展示了电影评分的箱线图,可以看出大部分电影的评分都很高,几乎没有低评分的电影。
热门电影前十排名:展示了评分最高的前十部电影。
评论数量分布图:显示了评论数量的分布情况,大部分电影的评论数量集中在几千到几万之间。
评分与评论数量双轴图:展示了每部电影的评分和评论数量的关系,方便对比。

结果展示

通过这个项目,我们从豆瓣电影网站爬取了Top250的电影数据,并对这些数据进行了可视化展示。我们可以看到,豆瓣电影Top250的评分普遍较高,评分与评论数量之间存在一定的正相关关系。这种数据分析和可视化方法不仅可以应用于电影数据,还可以扩展到其他领域的数据分析中。希望这篇文章对大家有所帮助!

源码

相关推荐
小二·几秒前
Python Web 开发进阶实战:时空数据引擎 —— 在 Flask + Vue 中构建实时地理围栏与轨迹分析系统
前端·python·flask
Uncertainty!!2 分钟前
pycharm本地Failed to open X display(exiting)
ide·python·pycharm
小二·3 分钟前
Python Web 开发进阶实战:可验证网络 —— 在 Flask + Vue 中实现去中心化身份(DID)与零知识证明(ZKP)认证
前端·网络·python
阿蒙Amon4 分钟前
C#每日面试题-ValueTuple和Tuple的区别
开发语言·c#
百***78755 分钟前
一步API+GPT-5.2生产级落地指南:架构设计+高可用+成本控制
开发语言·gpt·架构
Vallelonga5 分钟前
Rust 中 extern “C“ 关键字
c语言·开发语言·rust
勇往直前plus6 分钟前
解决:pycharm运行程序时出现Run ‘python tests for XXX.py‘的问题
ide·python·pycharm
Kratzdisteln8 分钟前
【1902】自适应学习系统 - 完整技术方案
java·python·学习
天若有情6739 分钟前
【Python】从0到1实现轻量级接口测试工具:基于Python+FastAPI+Pytest
python·测试工具·fastapi
Highcharts.js10 分钟前
2026年Highcharts迎来系列更新| V12.5 正式发布
javascript·信息可视化·highcharts·12.5·升级发布