齐普夫定律在循环神经网络中的语言模型的应用

目录

来自:https://zh-v2.d2l.ai/chapter_recurrent-neural-networks/language-models-and-dataset.html



齐普夫定律解释

齐普夫定律(Zipf's Law)是一种描述自然语言中单词频率分布的经验法则,它指出在一个文本或语料库中,单词的频率与其出现的排名成反比关系。具体来说,频率最高的单词出现的次数最多,排名第二的单词出现的次数大约是最高频单词的一半,排名第三的单词出现次数是最高频单词的三分之一,依此类推。

公式解释

齐普夫定律的数学表达式可以表示为:

n i ∝ 1 i α n_i \propto \frac{1}{i^\alpha} ni∝iα1

其中, n i n_i ni 表示第 ( i ) 个单词的频率,( i ) 是该单词的排名,( \alpha ) 是一个常数。为了便于理解,这个公式可以变形为:

[ n_i = \frac{C}{i^\alpha} ]

其中 ( C ) 是一个归一化常数。

在图8.3.7和8.3.8中,这个公式被进一步转化为对数形式,以便在对数坐标系中表现出线性关系:

[ \log n_i = -\alpha \log i + c ]

这里,( \log n_i ) 是单词频率的对数,( \log i ) 是单词排名的对数,( \alpha ) 是斜率,( c ) 是截距。

图与公式的关系

在图中绘制了词频与排名的对数图。通过对图像进行对数变换,可以观察到频率与排名之间的关系是否遵循齐普夫定律。如果单词频率与排名在对数坐标系中呈现一条直线,这意味着词频与排名确实遵循齐普夫定律,即:

[ \log n_i = -\alpha \log i + c ]

从图中我们可以看到,词频分布在对数坐标系中近似为一条直线,这验证了齐普夫定律的正确性。

代码与图的分析

从代码和图中,我们可以看到以下几个步骤:

  1. 统计词频:读取文本数据并进行分词,统计每个单词的出现频率。
  2. 排序:根据单词的出现频率对单词进行排序,得到每个单词的排名。
  3. 绘制图形:在对数坐标系中绘制单词的频率和排名的关系图。

代码示例如下:

python 复制代码
import random
import torch
from d2l import torch as d2l

tokens = d2l.tokenize(d2l.read_time_machine())
corpus = [token for line in tokens for token in line]
vocab = d2l.Vocab(corpus)
vocab.token_freqs[:10]

freqs = [freq for token, freq in vocab.token_freqs]
d2l.plot(freqs, xlabel='token: x', ylabel='frequency: n(x)',
         xscale='log', yscale='log')

上面的代码统计了文本数据中的词频,并在对数坐标系中绘制了词频图。

结论

通过以上分析,我们可以理解齐普夫定律的基本概念及其数学表示方式,并通过代码和图形验证了齐普夫定律在自然语言词频分布中的应用。具体地,通过观察词频和排名在对数坐标系中的线性关系,我们可以确认自然语言中的单词频率确实遵循齐普夫定律。


使用对数表达方式的原因

使用对数表达方式([ \log n_i = -\alpha \log i + c ])的原因主要有以下几点:

1. 线性化非线性关系

齐普夫定律本身是一个非线性关系:

[ n_i \propto \frac{1}{i^\alpha} ]

通过取对数,两边都取对数后变为线性关系:

[ \log n_i = -\alpha \log i + c ]

这使得我们可以用直线来描述这个关系,而直线在统计学和数据分析中更容易处理和理解。

2. 方便数据可视化和分析

对数坐标系能够更直观地展示数据的幂律分布特性。在对数坐标系中,幂律分布的数据点会呈现为一条直线,这使得我们可以更容易地识别和验证数据是否符合齐普夫定律。

在图中,横轴(单词排名)和纵轴(单词频率)都取对数,如果数据点近似排列成一条直线,就说明词频分布符合齐普夫定律。这种图形化表示使得观察和分析数据的分布规律变得直观和简单。

3. 降低数值范围

自然语言中的单词频率差异很大,频率最高的单词和频率最低的单词可能相差几个数量级。直接使用原始数据进行分析和可视化会遇到数值范围过大的问题,导致图形难以阅读和解释。而通过取对数,可以压缩数据的范围,使得不同频率的单词在图中更紧凑地展示,便于比较和分析。

4. 方便参数估计

在对数空间中,线性回归可以用来估计幂律分布中的参数。通过线性回归,我们可以得到斜率 ( -\alpha ) 和截距 ( c ),进而估计出原始幂律分布的参数。这在统计建模和参数估计中非常实用。

公式详细解释

原始齐普夫定律公式:

[ n_i \propto \frac{1}{i^\alpha} ]

取对数后变为:

[ \log n_i = \log \left( \frac{C}{i^\alpha} \right) ]

其中 ( C ) 是归一化常数,进一步分解:

[ \log n_i = \log C - \alpha \log i ]

将 ( \log C ) 记作 ( c )(因为 ( C ) 是常数,所以 ( \log C ) 也是常数),最终得到:

[ \log n_i = -\alpha \log i + c ]

结论

通过使用对数表达方式,我们将非线性的幂律关系转化为线性关系,使得数据可视化、分析和参数估计变得更加直观和方便。这种方法不仅简化了分析过程,也增强了结果的解释力和可视化效果。

相关推荐
Terry Cao 漕河泾30 分钟前
SRT3D: A Sparse Region-Based 3D Object Tracking Approach for the Real World
人工智能·计算机视觉·3d·目标跟踪
多猫家庭35 分钟前
宠物毛发对人体有什么危害?宠物空气净化器小米、希喂、352对比实测
人工智能·宠物
AI完全体39 分钟前
AI小项目4-用Pytorch从头实现Transformer(详细注解)
人工智能·pytorch·深度学习·机器学习·语言模型·transformer·注意力机制
AI知识分享官39 分钟前
智能绘画Midjourney AIGC在设计领域中的应用
人工智能·深度学习·语言模型·chatgpt·aigc·midjourney·llama
程序小旭1 小时前
Objects as Points基于中心点的目标检测方法CenterNet—CVPR2019
人工智能·目标检测·计算机视觉
阿利同学1 小时前
yolov8多任务模型-目标检测+车道线检测+可行驶区域检测-yolo多检测头代码+教程
人工智能·yolo·目标检测·计算机视觉·联系 qq1309399183·yolo多任务检测·多检测头检测
CV-King1 小时前
计算机视觉硬件知识点整理(三):镜头
图像处理·人工智能·python·opencv·计算机视觉
Alluxio官方1 小时前
Alluxio Enterprise AI on K8s FIO 测试教程
人工智能·机器学习
AI大模型知识分享1 小时前
Prompt最佳实践|指定输出的长度
人工智能·gpt·机器学习·语言模型·chatgpt·prompt·gpt-3
十有久诚1 小时前
TaskRes: Task Residual for Tuning Vision-Language Models
人工智能·深度学习·提示学习·视觉语言模型