导出 Whisper 模型到 ONNX

前言

在语音识别领域,Whisper 模型因其出色的性能和灵活性备受关注。为了在更多平台和环境中部署 Whisper 模型,导出为 ONNX 格式是一个有效的途径。ONNX(Open Neural Network Exchange)是一个开放格式,支持不同的深度学习框架之间的模型互操作性。本指南将详细介绍如何将 Whisper 模型导出为 ONNX 格式,并提供测试模型的步骤。

本节描述了如何将 Whisper 模型导出为 ONNX 格式。

可用模型

请注意,我们已经将 Whisper 模型导出为 ONNX 格式,它们可以从以下 Huggingface 仓库中获取:

模型类型 Huggingface 仓库链接
tiny.en 链接
base.en 链接
small.en 链接
distil-small.en 链接
medium.en 链接
distil-medium.en 链接
tiny 链接
base 链接
small 链接
medium 链接

提示 :你也可以从 此处 下载它们。

如果你想自己导出模型或了解模型的导出过程,请继续阅读下文。

导出为 ONNX

我们使用 export-onnx.py 来导出 Whisper 模型到 ONNX。

首先,让我们安装依赖并下载导出脚本:

bash 复制代码
pip install torch openai-whisper onnxruntime onnx
git clone https://github.com/k2-fsa/sherpa-onnx/
cd sherpa-onnx/scripts/whisper
python3 ./export-onnx.py --help

它将打印以下信息:

plaintext 复制代码
usage: export-onnx.py [-h] --model {tiny,tiny.en,base,base.en,small,small.en,medium,medium.en,large,large-v1,large-v2}

optional arguments:
  -h, --help            show this help message and exit
  --model {tiny,tiny.en,base,base.en,small,small.en,medium,medium.en,large,large-v1,large-v2}

要导出 tiny.en 模型,我们可以使用:

bash 复制代码
python3 ./export-onnx.py --model tiny.en

它将生成以下文件:

plaintext 复制代码
(py38) fangjuns-MacBook-Pro:whisper fangjun$ ls -lh tiny.en-*
-rw-r--r--  1 fangjun  staff   105M Aug  7 15:43 tiny.en-decoder.int8.onnx
-rw-r--r--  1 fangjun  staff   185M Aug  7 15:43 tiny.en-decoder.onnx
-rw-r--r--  1 fangjun  staff    12M Aug  7 15:43 tiny.en-encoder.int8.onnx
-rw-r--r--  1 fangjun  staff    36M Aug  7 15:43 tiny.en-encoder.onnx
-rw-r--r--  1 fangjun  staff   816K Aug  7 15:43 tiny.en-tokens.txt

tiny.en-encoder.onnx 是编码器模型,tiny.en-decoder.onnx 是解码器模型。

tiny.en-encoder.int8.onnx 是量化的编码器模型,tiny.en-decoder.int8.onnx 是量化的解码器模型。

tiny.en-tokens.txt 包含了令牌表,它将整数映射到令牌和反之。

要将导出的 ONNX 模型转换为 ONNX Runtime 格式,我们可以使用:

bash 复制代码
python3 -m onnxruntime.tools.convert_onnx_models_to_ort --optimization_style=Fixed ./

到目前为止,生成的文件如下:

plaintext 复制代码
(py38) fangjuns-MacBook-Pro:whisper fangjun$ ls -lh tiny.en-*
-rw-r--r--  1 fangjun  staff   105M Aug  7 15:43 tiny.en-decoder.int8.onnx
-rw-r--r--  1 fangjun  staff   185M Aug  7 15:43 tiny.en-decoder.onnx
-rw-r--r--  1 fangjun  staff    12M Aug  7 15:43 tiny.en-encoder.int8.onnx
-rw-r--r--  1 fangjun  staff    36M Aug  7 15:43 tiny.en-encoder.onnx
-rw-r--r--  1 fangjun  staff   816K Aug  7 15:43 tiny.en-tokens.txt

要检查导出的模型是否工作正常,我们可以使用 test.py

我们使用 此测试音频

bash 复制代码
pip install kaldi-native-fbank
wget https://huggingface.co/csukuangfj/sherpa-onnx-whisper-tiny.en/resolve/main/test_wavs/0.wav

python3 ./test.py \
  --encoder ./tiny.en-encoder.onnx \
  --decoder ./tiny.en-decoder.onnx \
  --tokens ./tiny.en-tokens.txt \
  ./0.wav

要测试 int8 量化模型,我们可以使用:

bash 复制代码
python3 ./test.py \
  --encoder ./tiny.en-encoder.int8.onnx \
  --decoder ./tiny.en-decoder.int8.onnx \
  --tokens ./tiny.en-tokens.txt \
  ./0.wav

希望这篇博客能帮助你顺利导出并测试 Whisper ONNX 模型。如果你有任何问题,请随时在评论区留言。

相关推荐
Swift社区2 天前
使用 AI 在医疗影像分析中的应用探索
typescript·tensorflow·openai
hunteritself2 天前
ChatGPT Search VS Kimi探索版:AI搜索哪家强?!
人工智能·gpt·chatgpt·openai·xai
唯创知音3 天前
WTV芯片在智能电子锁语音留言上的应用方案解析
人工智能·单片机·物联网·智能家居·语音识别
女王の专属领地4 天前
深入浅出《钉钉AI》产品体验报告
人工智能·钉钉·语音识别·ai协同办公
Icried4 天前
使用React 实现一个简单的待办事项列表|青训营笔记:方向三
前端·openai
檀越剑指大厂4 天前
自动语音识别(ASR)与文本转语音(TTS)技术的应用与发展
人工智能·语音识别
晓风伴月5 天前
腾讯IM web版本实现迅飞语音听写(流式版)
前端·语音识别·讯飞语音听写
Luke Ewin5 天前
开源的说话人分离项目 | 可以对指定的音频分离不同的说话人 | 通话录音中分离不同的说话人
python·开源·音视频·语音识别·说话人分离·说话人归类
陌上阳光5 天前
初学人工智不理解的名词3
人工智能·语音识别
知来者逆6 天前
基于集成Whisper 与 Pepper-GPT改进人机交互体验并实现顺畅通信
人工智能·gpt·语言模型·自然语言处理·whisper·人机交互