导出 Whisper 模型到 ONNX

前言

在语音识别领域,Whisper 模型因其出色的性能和灵活性备受关注。为了在更多平台和环境中部署 Whisper 模型,导出为 ONNX 格式是一个有效的途径。ONNX(Open Neural Network Exchange)是一个开放格式,支持不同的深度学习框架之间的模型互操作性。本指南将详细介绍如何将 Whisper 模型导出为 ONNX 格式,并提供测试模型的步骤。

本节描述了如何将 Whisper 模型导出为 ONNX 格式。

可用模型

请注意,我们已经将 Whisper 模型导出为 ONNX 格式,它们可以从以下 Huggingface 仓库中获取:

模型类型 Huggingface 仓库链接
tiny.en 链接
base.en 链接
small.en 链接
distil-small.en 链接
medium.en 链接
distil-medium.en 链接
tiny 链接
base 链接
small 链接
medium 链接

提示 :你也可以从 此处 下载它们。

如果你想自己导出模型或了解模型的导出过程,请继续阅读下文。

导出为 ONNX

我们使用 export-onnx.py 来导出 Whisper 模型到 ONNX。

首先,让我们安装依赖并下载导出脚本:

bash 复制代码
pip install torch openai-whisper onnxruntime onnx
git clone https://github.com/k2-fsa/sherpa-onnx/
cd sherpa-onnx/scripts/whisper
python3 ./export-onnx.py --help

它将打印以下信息:

plaintext 复制代码
usage: export-onnx.py [-h] --model {tiny,tiny.en,base,base.en,small,small.en,medium,medium.en,large,large-v1,large-v2}

optional arguments:
  -h, --help            show this help message and exit
  --model {tiny,tiny.en,base,base.en,small,small.en,medium,medium.en,large,large-v1,large-v2}

要导出 tiny.en 模型,我们可以使用:

bash 复制代码
python3 ./export-onnx.py --model tiny.en

它将生成以下文件:

plaintext 复制代码
(py38) fangjuns-MacBook-Pro:whisper fangjun$ ls -lh tiny.en-*
-rw-r--r--  1 fangjun  staff   105M Aug  7 15:43 tiny.en-decoder.int8.onnx
-rw-r--r--  1 fangjun  staff   185M Aug  7 15:43 tiny.en-decoder.onnx
-rw-r--r--  1 fangjun  staff    12M Aug  7 15:43 tiny.en-encoder.int8.onnx
-rw-r--r--  1 fangjun  staff    36M Aug  7 15:43 tiny.en-encoder.onnx
-rw-r--r--  1 fangjun  staff   816K Aug  7 15:43 tiny.en-tokens.txt

tiny.en-encoder.onnx 是编码器模型,tiny.en-decoder.onnx 是解码器模型。

tiny.en-encoder.int8.onnx 是量化的编码器模型,tiny.en-decoder.int8.onnx 是量化的解码器模型。

tiny.en-tokens.txt 包含了令牌表,它将整数映射到令牌和反之。

要将导出的 ONNX 模型转换为 ONNX Runtime 格式,我们可以使用:

bash 复制代码
python3 -m onnxruntime.tools.convert_onnx_models_to_ort --optimization_style=Fixed ./

到目前为止,生成的文件如下:

plaintext 复制代码
(py38) fangjuns-MacBook-Pro:whisper fangjun$ ls -lh tiny.en-*
-rw-r--r--  1 fangjun  staff   105M Aug  7 15:43 tiny.en-decoder.int8.onnx
-rw-r--r--  1 fangjun  staff   185M Aug  7 15:43 tiny.en-decoder.onnx
-rw-r--r--  1 fangjun  staff    12M Aug  7 15:43 tiny.en-encoder.int8.onnx
-rw-r--r--  1 fangjun  staff    36M Aug  7 15:43 tiny.en-encoder.onnx
-rw-r--r--  1 fangjun  staff   816K Aug  7 15:43 tiny.en-tokens.txt

要检查导出的模型是否工作正常,我们可以使用 test.py

我们使用 此测试音频

bash 复制代码
pip install kaldi-native-fbank
wget https://huggingface.co/csukuangfj/sherpa-onnx-whisper-tiny.en/resolve/main/test_wavs/0.wav

python3 ./test.py \
  --encoder ./tiny.en-encoder.onnx \
  --decoder ./tiny.en-decoder.onnx \
  --tokens ./tiny.en-tokens.txt \
  ./0.wav

要测试 int8 量化模型,我们可以使用:

bash 复制代码
python3 ./test.py \
  --encoder ./tiny.en-encoder.int8.onnx \
  --decoder ./tiny.en-decoder.int8.onnx \
  --tokens ./tiny.en-tokens.txt \
  ./0.wav

希望这篇博客能帮助你顺利导出并测试 Whisper ONNX 模型。如果你有任何问题,请随时在评论区留言。

相关推荐
win4r1 小时前
🚀用MCP为AutoGen开挂接入各种工具和框架!Cline零代码开发MCP Server实现接入LangFlow进行文档问答!利用MCP Server突破平
aigc·openai
Luke Ewin4 小时前
根据音频中的不同讲述人声音进行分离音频 | 基于ai的说话人声音分离项目
人工智能·python·音视频·语音识别·声纹识别·asr·3d-speaker
无奈何杨16 小时前
免费使用满血版DeepSeek-R1的多种方案
openai·deepseek
IT古董1 天前
【深度学习】自然语言处理(NLP)-语音识别-WaveNet
深度学习·自然语言处理·语音识别
不喝可乐_1 天前
在win11 中 whisper-large-v3-turbo 的简单使用
whisper
Linux猿2 天前
OpenAI Swarm 多智能体框架介绍
openai·多智能体·swarm·智能体·openai swarm·多智能体框架
xklcy2 天前
Unity通过Vosk实现离线语音识别方法
unity·语音识别
十幺卜入3 天前
DeepSeek服务器繁忙 多种方式继续优雅的使用它
openai·api·deepseek·服务器繁忙
Archie_IT3 天前
DeepSeek模型快速部署教程-搭建自己的DeepSeek
人工智能·深度学习·神经网络·计算机视觉·自然语言处理·数据挖掘·语音识别
EelBarb4 天前
GPT-Sovits:语音克隆训练-遇坑解决
人工智能·gpt·语音识别