高创新 | CEEMDAN-VMD-BiLSTM-Attention双重分解+双向长短期记忆神经网络+注意力机制多元时间序列预测

目录

效果一览








基本介绍

高创新 | CEEMDAN-VMD-BiLSTM-Attention双重分解+双向长短期记忆神经网络+注意力机制多元时间序列预测

本文提出一种基于CEEMDAN 的二次分解方法,通过样本熵重构CEEMDAN 分解后的序列,复杂序列通过VMD 分解后,将各个分量分别通过BiLSTM-Attention模型预测,最终将预测结果整合。

模型设计

1.Matlab实现CEEMDAN-VMD-BiLSTM-Attention双重分解+双向长短期记忆神经网络+注意力机制多元时间序列预测(完整源码和数据)

2.CEEMDAN分解,计算样本熵,根据样本熵进行kmeans聚类,调用VMD对高频分量二次分解, VMD分解的高频分量与前分量作为卷积双向长短期记忆神经网络注意力机制模型的目标输出分别预测后相加。

3.多变量单输出,考虑历史特征的影响!评价指标包括R2、MAE、RMSE、MAPE等。

4.算法新颖。CEEMDAN-VMD-BiLSTM-Attention模型处理数据,具有更高的准确率,能够跟踪数据的趋势以及变化。VMD 模型处理非线性、非平稳以及复杂的数据,表现得比EMD 系列更好,因此将重构的数据通过VMD 模型分解,提高了模型的准确度。

5.直接替换Excel数据即可用,注释清晰,适合新手小白,直接运行主文件一键出图。

6.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。

  • 参考文献1


  • 参考文献2
  • 参考文献3


  • 数据集

程序设计

  • 完整程序私信博主回复CEEMDAN-VMD-BiLSTM-Attention双重分解+双向长短期记忆神经网络+注意力机制多元时间序列预测
matlab 复制代码
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行

%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);

%%  数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

%%  数据平铺
P_train =  double(reshape(P_train, f_, 1, 1, M));
P_test  =  double(reshape(P_test , f_, 1, 1, N));

t_train = t_train';
t_test  = t_test' ;

%%  数据格式转换
for i = 1 : M
    p_train{i, 1} = P_train(:, :, 1, i);
end

for i = 1 : N
    p_test{i, 1}  = P_test( :, :, 1, i);
end

 
%%  参数设置
options = trainingOptions('adam', ...      % Adam 梯度下降算法
    'MaxEpochs', 100, ...                  % 最大训练次数 
    'InitialLearnRate', 0.01, ...          % 初始学习率为0.01
    'LearnRateSchedule', 'piecewise', ...  % 学习率下降
    'LearnRateDropFactor', 0.1, ...        % 学习率下降因子 0.1
    'LearnRateDropPeriod', 70, ...         % 经过训练后 学习率为 0.01*0.1
    'Shuffle', 'every-epoch', ...          % 每次训练打乱数据集
    'Verbose', 1);
figure
subplot(2,1,1)
plot(T_train,'k--','LineWidth',1.5);
hold on
plot(T_sim_a','r-','LineWidth',1.5)
legend('真实值','预测值')
title('CEEMDAN-VMD-CNN-BiLSTM-Attention训练集预测效果对比')
xlabel('样本点')
ylabel('数值')
subplot(2,1,2)
bar(T_sim_a'-T_train)
title('CEEMDAN-VMD-BiLSTM-Attention训练误差图')
xlabel('样本点')
ylabel('数值')

disp('............测试集误差指标............')
[mae2,rmse2,mape2,error2]=calc_error(T_test,T_sim_b');
fprintf('\n')


figure
subplot(2,1,1)
plot(T_test,'k--','LineWidth',1.5);
hold on
plot(T_sim_b','b-','LineWidth',1.5)
legend('真实值','预测值')
title('CEEMDAN-VMD-BiLSTM-Attention测试集预测效果对比')
xlabel('样本点')
ylabel('数值')
subplot(2,1,2)
bar(T_sim_b'-T_test)
title('CEEMDAN-VMD-BiLSTM-Attention测试误差图')
xlabel('样本点')
ylabel('数值')

参考资料

1\] https://hmlhml.blog.csdn.net/article/details/135536086?spm=1001.2014.3001.5502 \[2\] https://hmlhml.blog.csdn.net/article/details/137166860?spm=1001.2014.3001.5502 \[3\] https://hmlhml.blog.csdn.net/article/details/132372151

相关推荐
盼小辉丶7 小时前
TensorFlow深度学习实战(16)——注意力机制详解
深度学习·tensorflow·注意力机制
Francek Chen3 天前
【现代深度学习技术】注意力机制05:多头注意力
人工智能·pytorch·深度学习·神经网络·注意力机制
Francek Chen5 天前
【现代深度学习技术】注意力机制04:Bahdanau注意力
人工智能·pytorch·深度学习·神经网络·注意力机制
flying_13149 天前
面试常问系列(一)-神经网络参数初始化-之自注意力机制为什么除以根号d而不是2*根号d或者3*根号d
人工智能·深度学习·神经网络·transformer·注意力机制
墨顿17 天前
Transformer数学推导——Q29 推导语音识别中流式注意力(Streaming Attention)的延迟约束优化
人工智能·深度学习·transformer·注意力机制·跨模态与多模态
Light6017 天前
计算机视觉进化论:YOLOv12、YOLOv11与Darknet系YOLOv7的微调实战对比
人工智能·yolo·计算机视觉·模型压缩·注意力机制·微调策略·实时检测
微学AI20 天前
融合注意力机制和BiGRU的电力领域发电量预测项目研究,并给出相关代码
人工智能·深度学习·自然语言处理·注意力机制·bigru
简简单单做算法22 天前
基于GA遗传优化TCN-BiGRU注意力机制网络模型的时间序列预测算法matlab仿真
matlab·tcn-bigru·时间序列预测·注意力机制·ga遗传优化
終不似少年遊*1 个月前
【NLP解析】多头注意力+掩码机制+位置编码:Transformer三大核心技术详解
人工智能·自然语言处理·大模型·nlp·transformer·注意力机制
終不似少年遊*3 个月前
Transformer 的核心技术Encoder、Decoder、注意力模块解析
人工智能·深度学习·nlp·transformer·注意力机制