pytorch使用DataParallel并行化保存和加载模型(单卡、多卡各种情况讲解)

话不多说,直接进入正题。

!!!不过要注意一点,本文保存模型采用的都是只保存模型参数的情况,而不是保存整个模型的情况。一定要看清楚再用啊!

1 单卡训练,单卡加载

复制代码
#保存模型
torch.save(model.state_dict(),'model.pt')

#加载模型
model=MyModel()#MyModel()是你定义的创建模型的函数,就是先初始化得到一个模型实例,之后再将模型参数加载到该实例上
model.load_state_dict(torch.load('model.pt'))

2 单卡训练,多卡加载

保存模型的过程同第一种情况一样,但是要注意,多卡加载模型时, 是先加载模型参数,再对模型做并行化处理。

复制代码
#保存模型
torch.save(model.state_dict(),'model.pt')


#加载模型
model=MyModel()
model.load_state_dict(torch.load('model.pt'))

model=nn.DataParallel(model)#将模型进行并行化处理

3 多卡保存,单卡加载

方法一:

考虑到之后可能需要单卡加载你多卡训练的模型,所以建议在保存的时候,要去除模型参数字典里面的module,即使用model.module.state_dict()代替model.state_dict()来进行去除。

因为是单卡加载,所以还是要先加载 模型参数,再对模型做并行化处理。

复制代码
#保存模型
torch.save(model.module.state_dict(),'modle.pt')


#加载模型
model=MyModel()
model.load_state_dict(torch.load('model.pt'))

model=nn.DataParallel(model)

方法二:

仍然使用model.state_dict()保存,但是单卡加载的时候,要把模型做并行化(在单卡上并行),加载的时候要注意:由于我们保存到 方式是以多卡方式保存的,所以无论加载之后的模型是 在答案卡上运行还是在多卡上运行,都要先把模型并行化处理,然后再去加载模型。

复制代码
#保存模型
torch.save(model.state_dict(),'model.pt')


#加载模型
model=MyModel()

model=nn.DataParallel(model)

model.load_state_dict(torch.load('model.pt'))

4 多卡保存,多卡加载

这里保存模型采用"多卡保存,单卡加载"的第二种方法,加载的时候,要先把模型做并行化(在多卡上并行),然后再加载。

复制代码
#保存模型
torch.save(model.state_dict(),'model.pt')

#加载模型
model=MyModel()

model=nn.DataParallel(model)

model.load_state_dict(torch.load('model.pt'))

希望以上内容能够帮助到你,这里是希望你能越来越好的 小白冲鸭 ~~~

相关推荐
巴伦是只猫27 分钟前
【机器学习笔记 Ⅲ】4 特征选择
人工智能·笔记·机器学习
好心的小明40 分钟前
【王树森推荐系统】召回11:地理位置召回、作者召回、缓存召回
人工智能·缓存·推荐系统·推荐算法
weixin_418813871 小时前
Python-可视化学习笔记
笔记·python·学习
lishaoan771 小时前
使用tensorflow的线性回归的例子(十二)
人工智能·tensorflow·线性回归·戴明回归
Danceful_YJ1 小时前
4.权重衰减(weight decay)
python·深度学习·机器学习
二DUAN帝1 小时前
UE实现路径回放、自动驾驶功能简记
人工智能·websocket·机器学习·ue5·自动驾驶·ue4·cesiumforue
Zonda要好好学习2 小时前
Python入门Day5
python
zskj_zhyl2 小时前
AI健康小屋“15分钟服务圈”:如何重构社区健康生态?
大数据·人工智能·物联网
荔枝味啊~2 小时前
相机位姿估计
人工智能·计算机视觉·3d
陈纬度啊3 小时前
自动驾驶ROS2应用技术详解
人工智能·自动驾驶·unix