pytorch使用DataParallel并行化保存和加载模型(单卡、多卡各种情况讲解)

话不多说,直接进入正题。

!!!不过要注意一点,本文保存模型采用的都是只保存模型参数的情况,而不是保存整个模型的情况。一定要看清楚再用啊!

1 单卡训练,单卡加载

复制代码
#保存模型
torch.save(model.state_dict(),'model.pt')

#加载模型
model=MyModel()#MyModel()是你定义的创建模型的函数,就是先初始化得到一个模型实例,之后再将模型参数加载到该实例上
model.load_state_dict(torch.load('model.pt'))

2 单卡训练,多卡加载

保存模型的过程同第一种情况一样,但是要注意,多卡加载模型时, 是先加载模型参数,再对模型做并行化处理。

复制代码
#保存模型
torch.save(model.state_dict(),'model.pt')


#加载模型
model=MyModel()
model.load_state_dict(torch.load('model.pt'))

model=nn.DataParallel(model)#将模型进行并行化处理

3 多卡保存,单卡加载

方法一:

考虑到之后可能需要单卡加载你多卡训练的模型,所以建议在保存的时候,要去除模型参数字典里面的module,即使用model.module.state_dict()代替model.state_dict()来进行去除。

因为是单卡加载,所以还是要先加载 模型参数,再对模型做并行化处理。

复制代码
#保存模型
torch.save(model.module.state_dict(),'modle.pt')


#加载模型
model=MyModel()
model.load_state_dict(torch.load('model.pt'))

model=nn.DataParallel(model)

方法二:

仍然使用model.state_dict()保存,但是单卡加载的时候,要把模型做并行化(在单卡上并行),加载的时候要注意:由于我们保存到 方式是以多卡方式保存的,所以无论加载之后的模型是 在答案卡上运行还是在多卡上运行,都要先把模型并行化处理,然后再去加载模型。

复制代码
#保存模型
torch.save(model.state_dict(),'model.pt')


#加载模型
model=MyModel()

model=nn.DataParallel(model)

model.load_state_dict(torch.load('model.pt'))

4 多卡保存,多卡加载

这里保存模型采用"多卡保存,单卡加载"的第二种方法,加载的时候,要先把模型做并行化(在多卡上并行),然后再加载。

复制代码
#保存模型
torch.save(model.state_dict(),'model.pt')

#加载模型
model=MyModel()

model=nn.DataParallel(model)

model.load_state_dict(torch.load('model.pt'))

希望以上内容能够帮助到你,这里是希望你能越来越好的 小白冲鸭 ~~~

相关推荐
新智元6 分钟前
GPT-5系统提示词突遭泄露,17803 token曝光OpenAI小心思!
人工智能·openai
花妖大人8 分钟前
Python和LLM问题
python·llm
新智元18 分钟前
「机械飞升」18个月后,马斯克首位脑机植入者重磅发声:我重生了!
人工智能·openai
xuejianxinokok18 分钟前
大模型微调 Prompt Tuning与P-Tuning 的区别?
人工智能
用户51914958484526 分钟前
Authelia:开源双因素认证与单点登录解决方案
人工智能·aigc
martinzh31 分钟前
AI总让你失望?提示词链让我从骂'憨憨'变成夸'真棒'
人工智能
不喜欢学数学er32 分钟前
算法第五十三天:图论part04(第十一章)
开发语言·python·图论
杨过过儿37 分钟前
Task03:CAMEL框架中的多智能体系统(课程第三章3.1节)
人工智能·自然语言处理
你怎么知道我是队长41 分钟前
python---构造函数、析构函数
开发语言·python
CF14年老兵43 分钟前
深入浅出 Python 一等函数:一份友好的全面解析
后端·python·trae