pytorch使用DataParallel并行化保存和加载模型(单卡、多卡各种情况讲解)

话不多说,直接进入正题。

!!!不过要注意一点,本文保存模型采用的都是只保存模型参数的情况,而不是保存整个模型的情况。一定要看清楚再用啊!

1 单卡训练,单卡加载

复制代码
#保存模型
torch.save(model.state_dict(),'model.pt')

#加载模型
model=MyModel()#MyModel()是你定义的创建模型的函数,就是先初始化得到一个模型实例,之后再将模型参数加载到该实例上
model.load_state_dict(torch.load('model.pt'))

2 单卡训练,多卡加载

保存模型的过程同第一种情况一样,但是要注意,多卡加载模型时, 是先加载模型参数,再对模型做并行化处理。

复制代码
#保存模型
torch.save(model.state_dict(),'model.pt')


#加载模型
model=MyModel()
model.load_state_dict(torch.load('model.pt'))

model=nn.DataParallel(model)#将模型进行并行化处理

3 多卡保存,单卡加载

方法一:

考虑到之后可能需要单卡加载你多卡训练的模型,所以建议在保存的时候,要去除模型参数字典里面的module,即使用model.module.state_dict()代替model.state_dict()来进行去除。

因为是单卡加载,所以还是要先加载 模型参数,再对模型做并行化处理。

复制代码
#保存模型
torch.save(model.module.state_dict(),'modle.pt')


#加载模型
model=MyModel()
model.load_state_dict(torch.load('model.pt'))

model=nn.DataParallel(model)

方法二:

仍然使用model.state_dict()保存,但是单卡加载的时候,要把模型做并行化(在单卡上并行),加载的时候要注意:由于我们保存到 方式是以多卡方式保存的,所以无论加载之后的模型是 在答案卡上运行还是在多卡上运行,都要先把模型并行化处理,然后再去加载模型。

复制代码
#保存模型
torch.save(model.state_dict(),'model.pt')


#加载模型
model=MyModel()

model=nn.DataParallel(model)

model.load_state_dict(torch.load('model.pt'))

4 多卡保存,多卡加载

这里保存模型采用"多卡保存,单卡加载"的第二种方法,加载的时候,要先把模型做并行化(在多卡上并行),然后再加载。

复制代码
#保存模型
torch.save(model.state_dict(),'model.pt')

#加载模型
model=MyModel()

model=nn.DataParallel(model)

model.load_state_dict(torch.load('model.pt'))

希望以上内容能够帮助到你,这里是希望你能越来越好的 小白冲鸭 ~~~

相关推荐
Eiceblue7 分钟前
Python读取PDF:文本、图片与文档属性
数据库·python·pdf
红衣小蛇妖19 分钟前
神经网络-Day45
人工智能·深度学习·神经网络
weixin_5275504019 分钟前
初级程序员入门指南
javascript·python·算法
KKKlucifer35 分钟前
当AI遇上防火墙:新一代智能安全解决方案全景解析
人工智能
程序员的世界你不懂39 分钟前
Appium+python自动化(十)- 元素定位
python·appium·自动化
DisonTangor1 小时前
【小红书拥抱开源】小红书开源大规模混合专家模型——dots.llm1
人工智能·计算机视觉·开源·aigc
CryptoPP1 小时前
使用WebSocket实时获取印度股票数据源(无调用次数限制)实战
后端·python·websocket·网络协议·区块链
树叶@1 小时前
Python数据分析7
开发语言·python
老胖闲聊2 小时前
Python Rio 【图像处理】库简介
开发语言·图像处理·python
码界奇点3 小时前
Python Flask文件处理与异常处理实战指南
开发语言·python·自然语言处理·flask·python3.11