Kaggle -- Titanic - Machine Learning from Disaster

新手kaggle之旅:1 . 泰坦尼克号

使用一个简单的决策树进行模型构建,达到75.8%的准确率(有点低,但是刚开始)

完整代码如下:

复制代码
import pandas as pd
import numpy as np

df = pd.read_csv("train.csv")

df.info

label = ['Pclass','Sex','Age','SibSp','Fare','Embarked']

x = df[label]
y = df['Survived']
print(x.loc[0])

x['Embarked'] = x['Embarked'].map({'C': 1, 'Q': 2, 'S': 3})


x['Sex'] = x['Sex'].map({'male': 1,'female' : 2})
print(x.loc[0])

x = x.fillna(x.mean())


import sklearn
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

train_x,test_x,train_y,test_y = train_test_split(x,y,test_size=0.2,random_state=42,shuffle=True)

clf = DecisionTreeClassifier()
clf.fit(train_x,train_y)


y_pred = clf.predict(test_x)

accuracy = accuracy_score(y_pred,test_y)
print(f"Accuracy: {accuracy * 100:.2f}%")


res = pd.read_csv('test.csv')
print(res.loc[0])


res_x = res[label]
res_x['Embarked'] = res_x['Embarked'].map({'C': 1, 'Q': 2, 'S': 3})
res_x['Sex'] = res_x['Sex'].map({'male': 1,'female' : 2})
print(res_x.loc[0])

res_x = res_x.fillna(res_x.mean())


pred = clf.predict(res_x)
print(pred[0])

ans = res[['PassengerId']].copy()
ans['Survived'] = pred

print(ans.loc[0])

ans.to_csv("ans.csv")
相关推荐
B站计算机毕业设计超人几秒前
计算机毕业设计hadoop+spark+hive在线教育可视化 课程推荐系统 大数据毕业设计(源码+LW文档+PPT+讲解)
大数据·人工智能·hive·hadoop·scrapy·spark·课程设计
B站计算机毕业设计超人1 分钟前
计算机毕业设计PySpark+Hive+Django小红书评论情感分析 小红书笔记可视化 小红书舆情分析预测系统 大数据毕业设计(源码+LW+PPT+讲解)
大数据·人工智能·hive·爬虫·python·spark·课程设计
roamingcode4 分钟前
我是如何 Vibe Coding,将 AI CLI 工具从 Node.js 迁移到 Rust 并成功发布的
人工智能·rust·node.js·github·claude·github copilot
黄筱筱筱筱筱筱筱6 分钟前
7.适合新手小白学习Python的异常处理(Exception)
java·前端·数据库·python
下午写HelloWorld7 分钟前
生成对抗网络GAN的简要理解
人工智能·神经网络·生成对抗网络
Rolei_zl9 分钟前
AIGC(生成式AI)试用 45 -- DocsGPT 与 Python开发 1
python·aigc
Lethehong11 分钟前
探索高效工作流的秘密:GLM-4.7 与 Dify 平台深度集成实践
大数据·人工智能·算法
Yeats_Liao12 分钟前
微调决策树:何时使用Prompt Engineering,何时选择Fine-tuning?
前端·人工智能·深度学习·算法·决策树·机器学习·prompt
传说故事13 分钟前
【论文自动阅读】GREAT MARCH 100:100项细节导向任务用于评估具身AI agent
人工智能·具身智能
李昊哲小课16 分钟前
基于NLP的检索式聊天机器人
人工智能·自然语言处理·机器人