Kaggle -- Titanic - Machine Learning from Disaster

新手kaggle之旅:1 . 泰坦尼克号

使用一个简单的决策树进行模型构建,达到75.8%的准确率(有点低,但是刚开始)

完整代码如下:

复制代码
import pandas as pd
import numpy as np

df = pd.read_csv("train.csv")

df.info

label = ['Pclass','Sex','Age','SibSp','Fare','Embarked']

x = df[label]
y = df['Survived']
print(x.loc[0])

x['Embarked'] = x['Embarked'].map({'C': 1, 'Q': 2, 'S': 3})


x['Sex'] = x['Sex'].map({'male': 1,'female' : 2})
print(x.loc[0])

x = x.fillna(x.mean())


import sklearn
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

train_x,test_x,train_y,test_y = train_test_split(x,y,test_size=0.2,random_state=42,shuffle=True)

clf = DecisionTreeClassifier()
clf.fit(train_x,train_y)


y_pred = clf.predict(test_x)

accuracy = accuracy_score(y_pred,test_y)
print(f"Accuracy: {accuracy * 100:.2f}%")


res = pd.read_csv('test.csv')
print(res.loc[0])


res_x = res[label]
res_x['Embarked'] = res_x['Embarked'].map({'C': 1, 'Q': 2, 'S': 3})
res_x['Sex'] = res_x['Sex'].map({'male': 1,'female' : 2})
print(res_x.loc[0])

res_x = res_x.fillna(res_x.mean())


pred = clf.predict(res_x)
print(pred[0])

ans = res[['PassengerId']].copy()
ans['Survived'] = pred

print(ans.loc[0])

ans.to_csv("ans.csv")
相关推荐
数字孪生家族18 小时前
视频孪生与空间智能:重构数字时空认知,定义智能决策新范式
人工智能·重构·空间智能·视频孪生与空间智能
FL1717131418 小时前
Pytorch保存pt和pkl
人工智能·pytorch·python
jieshenai18 小时前
5090显卡,基于vllm完成大模型推理
人工智能·自然语言处理
逻极20 小时前
云智融合:AIGC与云计算服务新范式(深度解析)
人工智能·云计算·aigc·云服务
爱学习的小道长20 小时前
进程、线程、协程三者的区别和联系
python·ubuntu
雪兽软件21 小时前
人工智能(AI)的商业模式创新路线图
人工智能
L-李俊漩21 小时前
MMN-MnnLlmChat 启动顺序解析
开发语言·python·mnn
俊哥V21 小时前
AI一周事件(2025年11月12日-11月18日)
人工智能·ai
算法与编程之美21 小时前
提升minist的准确率并探索分类指标Precision,Recall,F1-Score和Accuracy
人工智能·算法·机器学习·分类·数据挖掘