Kaggle -- Titanic - Machine Learning from Disaster

新手kaggle之旅:1 . 泰坦尼克号

使用一个简单的决策树进行模型构建,达到75.8%的准确率(有点低,但是刚开始)

完整代码如下:

import pandas as pd
import numpy as np

df = pd.read_csv("train.csv")

df.info

label = ['Pclass','Sex','Age','SibSp','Fare','Embarked']

x = df[label]
y = df['Survived']
print(x.loc[0])

x['Embarked'] = x['Embarked'].map({'C': 1, 'Q': 2, 'S': 3})


x['Sex'] = x['Sex'].map({'male': 1,'female' : 2})
print(x.loc[0])

x = x.fillna(x.mean())


import sklearn
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

train_x,test_x,train_y,test_y = train_test_split(x,y,test_size=0.2,random_state=42,shuffle=True)

clf = DecisionTreeClassifier()
clf.fit(train_x,train_y)


y_pred = clf.predict(test_x)

accuracy = accuracy_score(y_pred,test_y)
print(f"Accuracy: {accuracy * 100:.2f}%")


res = pd.read_csv('test.csv')
print(res.loc[0])


res_x = res[label]
res_x['Embarked'] = res_x['Embarked'].map({'C': 1, 'Q': 2, 'S': 3})
res_x['Sex'] = res_x['Sex'].map({'male': 1,'female' : 2})
print(res_x.loc[0])

res_x = res_x.fillna(res_x.mean())


pred = clf.predict(res_x)
print(pred[0])

ans = res[['PassengerId']].copy()
ans['Survived'] = pred

print(ans.loc[0])

ans.to_csv("ans.csv")
相关推荐
PieroPc9 分钟前
Python 自动化 打开网站 填表登陆 例子
运维·python·自动化
Aileen_0v013 分钟前
【AI驱动的数据结构:包装类的艺术与科学】
linux·数据结构·人工智能·笔记·网络协议·tcp/ip·whisper
数信云 DCloud13 分钟前
实力认可 | 通付盾入选《ISC.AI 2024创新能力全景图谱》五项领域
人工智能
itwangyang52014 分钟前
AIDD - 从机器学习到深度学习:蛋白质-配体对接评分函数的进展
人工智能·深度学习·机器学习
jerry20110815 分钟前
机器学习常用术语
人工智能·机器学习
电报号dapp11917 分钟前
比特币市场震荡:回调背后的机遇与挑战
人工智能·去中心化·区块链·智能合约
AI_NEW_COME28 分钟前
构建全方位大健康零售帮助中心:提升服务与体验
大数据·人工智能
IT古董33 分钟前
【机器学习】机器学习的基本分类-强化学习-Actor-Critic 方法
人工智能·机器学习·分类
martian66533 分钟前
【人工智能数学基础】——深入详解贝叶斯理论:掌握贝叶斯定理及其在分类和预测中的应用
人工智能·数学·分类·数据挖掘·贝叶斯
mingo_敏34 分钟前
深度学习中的并行策略概述:2 Data Parallelism
人工智能·深度学习