svm 超参数

https://www.cnblogs.com/ChevisZhang/p/12932674.html

https://wenku.baidu.com/view/b8a2c73cfd4733687e21af45b307e87100f6f861.html?*wkts*=1718332423081\&bdQuery=svm的超参数

用交叉验证找到最好的参数 C 和γ 。使用 RBF 核时,要考虑两个参数 C 和γ 。因为参数的选择并没有一定的先验知识,必须做某种类型的模型选择(参数搜索)。目的是确定好的(C,γ)使得分类器能正确的预测未知数据(即测试集数 据),有较高的分类精确率。值得注意的是得到高的训练正确率即是分类器预测类标签已知的训练数据的正确率)不能保证在测试集上具有高的预测精度。因此,通 常采用交叉验证方法提高预测精度。k 折交叉验证(k-fold cross validation)

C为惩罚系数,C越大,对误差越重视,容易overfitting,C越小,对误差惩罚小,容忍大,越偏向soft margin

gamma大,会比较小,会使高斯分布又瘦又长,会存在overffting

相关推荐
好喜欢吃红柚子3 分钟前
万字长文解读空间、通道注意力机制机制和超详细代码逐行分析(SE,CBAM,SGE,CA,ECA,TA)
人工智能·pytorch·python·计算机视觉·cnn
小馒头学python7 分钟前
机器学习是什么?AIGC又是什么?机器学习与AIGC未来科技的双引擎
人工智能·python·机器学习
神奇夜光杯17 分钟前
Python酷库之旅-第三方库Pandas(202)
开发语言·人工智能·python·excel·pandas·标准库及第三方库·学习与成长
正义的彬彬侠19 分钟前
《XGBoost算法的原理推导》12-14决策树复杂度的正则化项 公式解析
人工智能·决策树·机器学习·集成学习·boosting·xgboost
Debroon29 分钟前
RuleAlign 规则对齐框架:将医生的诊断规则形式化并注入模型,无需额外人工标注的自动对齐方法
人工智能
羊小猪~~36 分钟前
神经网络基础--什么是正向传播??什么是方向传播??
人工智能·pytorch·python·深度学习·神经网络·算法·机器学习
AI小杨37 分钟前
【车道线检测】一、传统车道线检测:基于霍夫变换的车道线检测史诗级详细教程
人工智能·opencv·计算机视觉·霍夫变换·车道线检测
晨曦_子画42 分钟前
编程语言之战:AI 之后的 Kotlin 与 Java
android·java·开发语言·人工智能·kotlin
道可云43 分钟前
道可云人工智能&元宇宙每日资讯|2024国际虚拟现实创新大会将在青岛举办
大数据·人工智能·3d·机器人·ar·vr
人工智能培训咨询叶梓1 小时前
探索开放资源上指令微调语言模型的现状
人工智能·语言模型·自然语言处理·性能优化·调优·大模型微调·指令微调