svm 超参数

https://www.cnblogs.com/ChevisZhang/p/12932674.html

https://wenku.baidu.com/view/b8a2c73cfd4733687e21af45b307e87100f6f861.html?*wkts*=1718332423081\&bdQuery=svm的超参数

用交叉验证找到最好的参数 C 和γ 。使用 RBF 核时,要考虑两个参数 C 和γ 。因为参数的选择并没有一定的先验知识,必须做某种类型的模型选择(参数搜索)。目的是确定好的(C,γ)使得分类器能正确的预测未知数据(即测试集数 据),有较高的分类精确率。值得注意的是得到高的训练正确率即是分类器预测类标签已知的训练数据的正确率)不能保证在测试集上具有高的预测精度。因此,通 常采用交叉验证方法提高预测精度。k 折交叉验证(k-fold cross validation)

C为惩罚系数,C越大,对误差越重视,容易overfitting,C越小,对误差惩罚小,容忍大,越偏向soft margin

gamma大,会比较小,会使高斯分布又瘦又长,会存在overffting

相关推荐
程序猿阿伟10 分钟前
《SQL赋能人工智能:解锁特征工程的隐秘力量》
数据库·人工智能·sql
csssnxy42 分钟前
叁仟数智指路机器人是否支持远程监控和管理?
大数据·人工智能
车斗1 小时前
win10 笔记本电脑安装 pytorch+cuda+gpu 大模型开发环境过程记录
人工智能·pytorch·电脑
KY_chenzhao1 小时前
数据驱动防灾:AI 大模型在地质灾害应急决策中的关键作用。基于DeepSeek/ChatGPT的AI智能体开发
人工智能·chatgpt·智能体·deepseek·本地化部署
大多_C1 小时前
量化方法分类
人工智能·分类·数据挖掘
www_pp_2 小时前
# 基于 OpenCV 的人脸识别实战:从基础到进阶
人工智能·opencv·计算机视觉
三月七(爱看动漫的程序员)2 小时前
LLM面试题六
数据库·人工智能·gpt·语言模型·自然语言处理·llama·milvus
蹦蹦跳跳真可爱5893 小时前
Python----计算机视觉处理(Opencv:道路检测之车道线拟合)
开发语言·人工智能·python·opencv·计算机视觉
deephub3 小时前
计算加速技术比较分析:GPU、FPGA、ASIC、TPU与NPU的技术特性、应用场景及产业生态
人工智能·深度学习·gpu·计算加速
杰克逊的日记4 小时前
大语言模型应用和训练(人工智能)
人工智能·算法·语言模型