svm 超参数

https://www.cnblogs.com/ChevisZhang/p/12932674.html

https://wenku.baidu.com/view/b8a2c73cfd4733687e21af45b307e87100f6f861.html?*wkts*=1718332423081\&bdQuery=svm的超参数

用交叉验证找到最好的参数 C 和γ 。使用 RBF 核时,要考虑两个参数 C 和γ 。因为参数的选择并没有一定的先验知识,必须做某种类型的模型选择(参数搜索)。目的是确定好的(C,γ)使得分类器能正确的预测未知数据(即测试集数 据),有较高的分类精确率。值得注意的是得到高的训练正确率即是分类器预测类标签已知的训练数据的正确率)不能保证在测试集上具有高的预测精度。因此,通 常采用交叉验证方法提高预测精度。k 折交叉验证(k-fold cross validation)

C为惩罚系数,C越大,对误差越重视,容易overfitting,C越小,对误差惩罚小,容忍大,越偏向soft margin

gamma大,会比较小,会使高斯分布又瘦又长,会存在overffting

相关推荐
互联网全栈架构23 分钟前
遨游Spring AI:第一盘菜Hello World
java·人工智能·后端·spring
m0_4652157924 分钟前
大语言模型解析
人工智能·语言模型·自然语言处理
张较瘦_1 小时前
[论文阅读] 人工智能+软件工程 | 结对编程中的知识转移新图景
人工智能·软件工程·结对编程
小Q小Q2 小时前
cmake编译LASzip和LAStools
人工智能·计算机视觉
yzx9910132 小时前
基于 Q-Learning 算法和 CNN 的强化学习实现方案
人工智能·算法·cnn
token-go2 小时前
[特殊字符] 革命性AI提示词优化平台正式开源!
人工智能·开源
cooldream20093 小时前
华为云Flexus+DeepSeek征文|基于华为云Flexus X和DeepSeek-R1打造个人知识库问答系统
人工智能·华为云·dify
Blossom.1186 小时前
使用Python和Scikit-Learn实现机器学习模型调优
开发语言·人工智能·python·深度学习·目标检测·机器学习·scikit-learn
DFminer8 小时前
【LLM】fast-api 流式生成测试
人工智能·机器人
郄堃Deep Traffic8 小时前
机器学习+城市规划第十四期:利用半参数地理加权回归来实现区域带宽不同的规划任务
人工智能·机器学习·回归·城市规划