【数据挖掘-思考】分类和聚类

将芝麻和花生分开,是一个分类问题还是聚类问题?

显而易见的,在日常生活中,这是一个分类问题,在数据挖掘领域中,是否也是这样呢?


通义千问的回答:

在数据挖掘中,将芝麻和花生分开可以根据不同的场景被视为分类或聚类问题:

  • 分类 (Classification): 如果我们已经有了一套标注好的数据集,即一部分芝麻已经被标记为"芝麻",一部分绿豆被标记为"绿豆",并且我们的目标是基于这些已知的样本特征来训练一个模型,以便对新的未标记物品进行预测(判断它是芝麻还是绿豆),那么这个问题就是一个分类问题。
  • 聚类 (Clustering): 如果我们没有预先标记的数据,而是有一堆混在一起的种子,我们希望通过分析种子的大小、颜色、形状等属性,将它们自动分成几组,并且假设这些组能合理地对应到芝麻和绿豆这两类,那么这就是一个聚类问题。聚类旨在根据对象之间的相似性或距离,将它们分组成多个簇,每簇内部的对象相似度较高,而簇间相似度较低。
  • 因此,决定这是分类还是聚类问题的关键在于是否有预定义的类别标签。如果有标签,就是分类;如果没有,而是需要自动发现类别,那就是聚类。

这样学术性的回答好复杂>﹏<

我的老师教给我的:

也就是说,需要训练数据,构建模型的问题是分类问题,很显然这里没有用到,所以是聚类问题。聚类问题关键在于根据某种标准将相似度高的对象分到一起。

你能理解吗?


点赞关注收藏,获取更多干货知识~

相关推荐
m0_46260522几秒前
第N5周:Pytorch文本分类入门
人工智能·pytorch·分类
沧澜sincerely2 小时前
数据挖掘概述
人工智能·数据挖掘
StarPrayers.4 小时前
K-means 聚类
机器学习·kmeans·聚类
极客学术工坊9 小时前
2023年辽宁省数学建模竞赛-B题 数据驱动的水下导航适配区分类预测-基于支持向量机对水下导航适配区分类的研究
机器学习·支持向量机·数学建模·分类
Learn Beyond Limits14 小时前
Regression vs. Classification|回归vs分类
人工智能·python·算法·ai·分类·数据挖掘·回归
mayubins14 小时前
稳定边界层高度参数化方案的回归建模
人工智能·数据挖掘·回归
迦蓝叶15 小时前
Apache Jena:利用 SPARQL 查询与推理机深度挖掘知识图谱
java·数据挖掘·apache·知识图谱·查询·知识挖掘·推理机
qunshankeji16 小时前
草莓病害智能识别与分类_Cascade-RCNN_HRNetV2p-W18-20e_COCO实现
人工智能·数据挖掘
人大博士的交易之路19 小时前
今日行情明日机会——20251113
大数据·数据挖掘·数据分析·缠论·道琼斯结构·涨停板
zhangfeng11331 天前
学习文本大模型的学习路径,各种大模型对比和分类以及各个大模型对硬件的要求,开源大模型有哪些
学习·分类·开源