【数据挖掘-思考】分类和聚类

将芝麻和花生分开,是一个分类问题还是聚类问题?

显而易见的,在日常生活中,这是一个分类问题,在数据挖掘领域中,是否也是这样呢?


通义千问的回答:

在数据挖掘中,将芝麻和花生分开可以根据不同的场景被视为分类或聚类问题:

  • 分类 (Classification): 如果我们已经有了一套标注好的数据集,即一部分芝麻已经被标记为"芝麻",一部分绿豆被标记为"绿豆",并且我们的目标是基于这些已知的样本特征来训练一个模型,以便对新的未标记物品进行预测(判断它是芝麻还是绿豆),那么这个问题就是一个分类问题。
  • 聚类 (Clustering): 如果我们没有预先标记的数据,而是有一堆混在一起的种子,我们希望通过分析种子的大小、颜色、形状等属性,将它们自动分成几组,并且假设这些组能合理地对应到芝麻和绿豆这两类,那么这就是一个聚类问题。聚类旨在根据对象之间的相似性或距离,将它们分组成多个簇,每簇内部的对象相似度较高,而簇间相似度较低。
  • 因此,决定这是分类还是聚类问题的关键在于是否有预定义的类别标签。如果有标签,就是分类;如果没有,而是需要自动发现类别,那就是聚类。

这样学术性的回答好复杂>﹏<

我的老师教给我的:

也就是说,需要训练数据,构建模型的问题是分类问题,很显然这里没有用到,所以是聚类问题。聚类问题关键在于根据某种标准将相似度高的对象分到一起。

你能理解吗?


点赞关注收藏,获取更多干货知识~

相关推荐
RickyWasYoung9 分钟前
【聚类算法】高维数据的聚类
算法·数据挖掘·聚类
R-G-B1 小时前
【P19 机器学习-分类算法及应用实践】手写数字识别(KNN)
python·机器学习·分类·手写数字识别·knn算法
我是哈哈hh12 小时前
【Python数据分析】Numpy总结
开发语言·python·数据挖掘·数据分析·numpy·python数据分析
小飞象—木兮18 小时前
【产品运营必备】数据分析实战宝典:从入门到精通,驱动业务增长(附相关材料下载)
大数据·数据挖掘·数据分析·产品运营
kong790692819 小时前
大数据的特征和数据分析
大数据·数据挖掘·数据分析
weixin_4577600020 小时前
EIOU (Efficient IoU): 高效边界框回归损失的解析
人工智能·数据挖掘·回归
ytttr87320 小时前
基于自适应分水岭和亲和传播聚类的彩色图像分割
人工智能·计算机视觉·聚类
sensen_kiss21 小时前
INT303 Big Data Analysis 大数据分析 Pt.10 分析模型和混合模型
大数据·学习·机器学习·数据挖掘·数据分析
海边夕阳20061 天前
【每天一个AI小知识】:什么是人脸识别?
人工智能·经验分享·python·算法·分类·人脸识别
njsgcs1 天前
pyautocad 基于线段包围盒聚类
python·数据挖掘·聚类