【数据挖掘-思考】分类和聚类

将芝麻和花生分开,是一个分类问题还是聚类问题?

显而易见的,在日常生活中,这是一个分类问题,在数据挖掘领域中,是否也是这样呢?


通义千问的回答:

在数据挖掘中,将芝麻和花生分开可以根据不同的场景被视为分类或聚类问题:

  • 分类 (Classification): 如果我们已经有了一套标注好的数据集,即一部分芝麻已经被标记为"芝麻",一部分绿豆被标记为"绿豆",并且我们的目标是基于这些已知的样本特征来训练一个模型,以便对新的未标记物品进行预测(判断它是芝麻还是绿豆),那么这个问题就是一个分类问题。
  • 聚类 (Clustering): 如果我们没有预先标记的数据,而是有一堆混在一起的种子,我们希望通过分析种子的大小、颜色、形状等属性,将它们自动分成几组,并且假设这些组能合理地对应到芝麻和绿豆这两类,那么这就是一个聚类问题。聚类旨在根据对象之间的相似性或距离,将它们分组成多个簇,每簇内部的对象相似度较高,而簇间相似度较低。
  • 因此,决定这是分类还是聚类问题的关键在于是否有预定义的类别标签。如果有标签,就是分类;如果没有,而是需要自动发现类别,那就是聚类。

这样学术性的回答好复杂>﹏<

我的老师教给我的:

也就是说,需要训练数据,构建模型的问题是分类问题,很显然这里没有用到,所以是聚类问题。聚类问题关键在于根据某种标准将相似度高的对象分到一起。

你能理解吗?


点赞关注收藏,获取更多干货知识~

相关推荐
2301_7921858811 小时前
基于软件工程的结构化分析实验
人工智能·数据挖掘·软件工程
一瞬祈望12 小时前
ResNet50 图像分类完整实战(Notebook Demo + 训练代码)
人工智能·python·神经网络·数据挖掘
顽强卖力15 小时前
第一章:什么是数据分析?
数据挖掘·数据分析
cici1587415 小时前
模式识别,非监督聚类分析分类方法
人工智能·机器学习·分类
QZ1665609515915 小时前
政务数据智能治理一体化解决方案:合规对标、易掌握、自适应分类的全面实现
分类·数据挖掘·政务
奥利文儿16 小时前
【虚拟机】win11+VMware+ubuntu24 网络配置篇
网络·数据挖掘·数据分析
Aloudata19 小时前
根据业务角色创建 AI 数据分析助手,满足集团型企业多部门个性化需求
人工智能·数据挖掘·数据分析·chatbi·data agent
lxmyzzs19 小时前
【硬核部署】在 RK3588上部署毫秒级音频分类算法
人工智能·分类·音视频
qq_27049009619 小时前
基于大数据的民宿数据分析及可视化平台的设计与实现
大数据·数据挖掘·数据分析
后端小张19 小时前
【AI 学习】深度解析Transformer核心:注意力机制的原理、实现与应用
人工智能·深度学习·学习·机器学习·自然语言处理·数据挖掘·transformer