【数据挖掘-思考】分类和聚类

将芝麻和花生分开,是一个分类问题还是聚类问题?

显而易见的,在日常生活中,这是一个分类问题,在数据挖掘领域中,是否也是这样呢?


通义千问的回答:

在数据挖掘中,将芝麻和花生分开可以根据不同的场景被视为分类或聚类问题:

  • 分类 (Classification): 如果我们已经有了一套标注好的数据集,即一部分芝麻已经被标记为"芝麻",一部分绿豆被标记为"绿豆",并且我们的目标是基于这些已知的样本特征来训练一个模型,以便对新的未标记物品进行预测(判断它是芝麻还是绿豆),那么这个问题就是一个分类问题。
  • 聚类 (Clustering): 如果我们没有预先标记的数据,而是有一堆混在一起的种子,我们希望通过分析种子的大小、颜色、形状等属性,将它们自动分成几组,并且假设这些组能合理地对应到芝麻和绿豆这两类,那么这就是一个聚类问题。聚类旨在根据对象之间的相似性或距离,将它们分组成多个簇,每簇内部的对象相似度较高,而簇间相似度较低。
  • 因此,决定这是分类还是聚类问题的关键在于是否有预定义的类别标签。如果有标签,就是分类;如果没有,而是需要自动发现类别,那就是聚类。

这样学术性的回答好复杂>﹏<

我的老师教给我的:

也就是说,需要训练数据,构建模型的问题是分类问题,很显然这里没有用到,所以是聚类问题。聚类问题关键在于根据某种标准将相似度高的对象分到一起。

你能理解吗?


点赞关注收藏,获取更多干货知识~

相关推荐
看到我,请让我去学习34 分钟前
OpenCV 与深度学习:从图像分类到目标检测技术
深度学习·opencv·分类
Smilecoc3 小时前
线性回归原理推导与应用(十):逻辑回归多分类实战
分类·逻辑回归·线性回归
超龄超能程序猿6 小时前
使用 Python 对本地图片进行图像分类
开发语言·人工智能·python·机器学习·分类·数据挖掘·scipy
一条破秋裤1 天前
一份多光谱数据分析
笔记·数据挖掘·数据分析
cal_1 天前
数据分析中的拉链表解析
大数据·数据挖掘·数据分析
九章云极AladdinEdu1 天前
华为昇腾NPU与NVIDIA CUDA生态兼容层开发实录:手写算子自动转换工具链(AST级代码迁移方案)
人工智能·深度学习·opencv·机器学习·华为·数据挖掘·gpu算力
王小王-1231 天前
基于Python的程序员数据分析与可视化系统的设计与实现
python·数据挖掘·数据分析·招聘数据分析·程序员数据分析·招聘薪资数据分析·智联招聘可视化
Deng9452013141 天前
基于数据挖掘的课程推荐系统研究
人工智能·数据挖掘·数据预处理·基于用户的协同过滤·文本特征提取
kngines2 天前
【力扣(LeetCode)】数据挖掘面试题0002:当面对实时数据流时您如何设计和实现机器学习模型?
机器学习·数据挖掘·面试题·实时数据
HyperAI超神经2 天前
OmniGen2 多模态推理×自我纠正双引擎,引领图像生成新范式;95 万分类标签!TreeOfLife-200M 解锁物种认知新维度
人工智能·数据挖掘·数据集·图像生成·医疗健康·在线教程·数学代码