【数据挖掘-思考】分类和聚类

将芝麻和花生分开,是一个分类问题还是聚类问题?

显而易见的,在日常生活中,这是一个分类问题,在数据挖掘领域中,是否也是这样呢?


通义千问的回答:

在数据挖掘中,将芝麻和花生分开可以根据不同的场景被视为分类或聚类问题:

  • 分类 (Classification): 如果我们已经有了一套标注好的数据集,即一部分芝麻已经被标记为"芝麻",一部分绿豆被标记为"绿豆",并且我们的目标是基于这些已知的样本特征来训练一个模型,以便对新的未标记物品进行预测(判断它是芝麻还是绿豆),那么这个问题就是一个分类问题。
  • 聚类 (Clustering): 如果我们没有预先标记的数据,而是有一堆混在一起的种子,我们希望通过分析种子的大小、颜色、形状等属性,将它们自动分成几组,并且假设这些组能合理地对应到芝麻和绿豆这两类,那么这就是一个聚类问题。聚类旨在根据对象之间的相似性或距离,将它们分组成多个簇,每簇内部的对象相似度较高,而簇间相似度较低。
  • 因此,决定这是分类还是聚类问题的关键在于是否有预定义的类别标签。如果有标签,就是分类;如果没有,而是需要自动发现类别,那就是聚类。

这样学术性的回答好复杂>﹏<

我的老师教给我的:

也就是说,需要训练数据,构建模型的问题是分类问题,很显然这里没有用到,所以是聚类问题。聚类问题关键在于根据某种标准将相似度高的对象分到一起。

你能理解吗?


点赞关注收藏,获取更多干货知识~

相关推荐
汤姆yu19 小时前
基于大数据的短视频流量数据分析与可视化
大数据·数据挖掘·数据分析
Dev7z20 小时前
结合HOG特征与支持向量机(SVM)的车牌字符识别系统
人工智能·分类·数据挖掘
机器学习之心21 小时前
MATLAB基于BNT工具箱的多输入分类预测
matlab·分类
geneculture1 天前
官学商大跨界 · 产学研大综合:融智学新范式应用体系
大数据·人工智能·物联网·数据挖掘·哲学与科学统一性·信息融智学
年年测试1 天前
AI驱动的测试:用Dify工作流实现智能缺陷分析与分类
人工智能·分类·数据挖掘
格图素书1 天前
数学建模算法案例精讲500篇-【数学建模】DBSCAN聚类算法
算法·数据挖掘·聚类
abcwoabcwo2 天前
回归、预测、分类三者关系
分类·数据挖掘·回归
泰迪智能科技2 天前
分享|智能决策,精准增长:企业数据挖掘关键策略与应用全景
人工智能·数据挖掘
大数据魔法师2 天前
分类与回归算法(二) - 线性回归
分类·回归·线性回归
学掌门3 天前
用Python做数据分析之数据表清洗
数据挖掘·数据分析