【数据挖掘-思考】分类和聚类

将芝麻和花生分开,是一个分类问题还是聚类问题?

显而易见的,在日常生活中,这是一个分类问题,在数据挖掘领域中,是否也是这样呢?


通义千问的回答:

在数据挖掘中,将芝麻和花生分开可以根据不同的场景被视为分类或聚类问题:

  • 分类 (Classification): 如果我们已经有了一套标注好的数据集,即一部分芝麻已经被标记为"芝麻",一部分绿豆被标记为"绿豆",并且我们的目标是基于这些已知的样本特征来训练一个模型,以便对新的未标记物品进行预测(判断它是芝麻还是绿豆),那么这个问题就是一个分类问题。
  • 聚类 (Clustering): 如果我们没有预先标记的数据,而是有一堆混在一起的种子,我们希望通过分析种子的大小、颜色、形状等属性,将它们自动分成几组,并且假设这些组能合理地对应到芝麻和绿豆这两类,那么这就是一个聚类问题。聚类旨在根据对象之间的相似性或距离,将它们分组成多个簇,每簇内部的对象相似度较高,而簇间相似度较低。
  • 因此,决定这是分类还是聚类问题的关键在于是否有预定义的类别标签。如果有标签,就是分类;如果没有,而是需要自动发现类别,那就是聚类。

这样学术性的回答好复杂>﹏<

我的老师教给我的:

也就是说,需要训练数据,构建模型的问题是分类问题,很显然这里没有用到,所以是聚类问题。聚类问题关键在于根据某种标准将相似度高的对象分到一起。

你能理解吗?


点赞关注收藏,获取更多干货知识~

相关推荐
陈辛chenxin12 小时前
【大数据技术07】分类和聚类算法
神经网络·决策树·分类·聚类·分类算法
XINVRY-FPGA20 小时前
XCVP1802-2MSILSVC4072 AMD Xilinx Versal Premium Adaptive SoC FPGA
人工智能·嵌入式硬件·fpga开发·数据挖掘·云计算·硬件工程·fpga
c***42102 天前
爬虫基础之爬取某基金网站+数据分析
爬虫·数据挖掘·数据分析
hacker7072 天前
openGauss 在K12教育场景的数据处理测评:CASE WHEN 实现高效分类
人工智能·分类·数据挖掘
图灵信徒2 天前
R语言第七章线性回归模型
数据挖掘·数据分析·r语言·线性回归
rgb2gray3 天前
增强城市数据分析:多密度区域的自适应分区框架
大数据·python·机器学习·语言模型·数据挖掘·数据分析·llm
大数据魔法师3 天前
分类与回归算法(六)- 集成学习(随机森林、梯度提升决策树、Stacking分类)相关理论
分类·回归·集成学习
大数据魔法师3 天前
分类与回归算法(五)- 决策树分类
决策树·分类·回归
happy egg3 天前
随机森林分类VS回归
随机森林·分类·回归
studytosky3 天前
深度学习理论与实战:MNIST 手写数字分类实战
人工智能·pytorch·python·深度学习·机器学习·分类·matplotlib