人脸识别之--计算余弦相似度-android

余弦相似度是比对两个向量是否一致,余弦相似度是通过计算两个向量的夹角余弦值来衡量它们之间的相似度,算出来的值可以直接用作相似度的分数。

公式:

余弦相似度和欧式距离经常用来人脸识别特征对比。

其中:

1、余弦相似度是通过计算两个向量的夹角余弦值来衡量它们之间的相似度

2、欧式距离是通过计算两个向量之间的欧氏距离来衡量它们之间的相似度

  • 余弦相似度的优点是在计算相似度时不受向量的绝对大小影响,只受向量的方向影响,因此适用于文本、图像等数据的相似度度量。
  • 欧式距离的优点是直观易理解,计算简单。但是欧式距离在计算高维稀疏数据时可能会受到维度灾难的影响,且对异常值敏感。

在人脸识别中余弦距离用的比较多。

这里用来计算两组特征值的相似度,具体代码如下:

复制代码
package com.hax.util;

import com.hax.vo.FaceInfo;

import java.util.List;

/**
 * add hmy
 * 人脸比对工具
 * 2024年6月12日16:34:22
 */
public class FaceUtils {

    // 计算平方值
    private static double euclideanNorm(double []vec) {
        double sum = 0.0;
        for (int i =0; i < vec.length; i++){
            sum += vec[i] * vec[i];
        }
        return Math.sqrt(sum);
    }
    // 计算平方值
    private static double euclideanNorm(List<Float> vec) {
        double sum = 0.0f;
        for (int i =0; i < vec.size(); i++){
            sum += vec.get(i) * vec.get(i);
        }
        return Math.sqrt(sum);
    }
    // 计算两个向量的点积
    private static double dotProduct(double[] vec1,double[] vec2) {

        double result = 0.0;
        for (int i = 0; i < vec1.length; ++i) {
            result += vec1[i] * vec2[i];
        }

        return result;
    }
    // 计算两个向量的点积
    private static double dotProduct(List<Float> vec1, List<Float> vec2) {

        double result = 0.0f;
        for (int i = 0; i < vec1.size(); ++i) {
            result += (vec1.get(i) * vec2.get(i));
        }

        return result;
    }
    //计算余弦相似度 返回具体分值
    public static double verification(FaceInfo src, FaceInfo dest) {
        double sim = dotProduct(src.getEmbed(), dest.getEmbed()) /
                (euclideanNorm(src.getEmbed()) * euclideanNorm(dest.getEmbed()));

        sim = 0.5 + sim * 0.5;//把-1到1的范围 隐射到0-1的范围 -1到0 映射0-0.5 0到0.5隐射到0.5-0.75 0.5到1 映射到0.75-1

        return sim;
    }
}

其中Embed值是List<Float> 值为512维。

相关推荐
Athenaand1 天前
代码随想录算法训练营第62天 | Floyd 算法精讲、A * 算法精讲 (A star算法)、最短路算法总结篇、图论总结
算法·图论
zhangfeng11331 天前
错误于make.names(vnames, unique = TRUE): invalid multibyte string 9 使用 R 语言进行数据处理时
开发语言·r语言·生物信息
七夜zippoe1 天前
缓存三大劫攻防战:穿透、击穿、雪崩的Java实战防御体系(三)
java·开发语言·缓存
lllsure1 天前
【Docker】镜像
java·spring cloud·docker
zhysunny1 天前
51.不可变基础设施:云原生时代的「乐高城堡」建造法
java·云原生
郝学胜-神的一滴1 天前
Linux命令行的核心理念与实用指南
linux·运维·服务器·开发语言·程序人生
无名客01 天前
SQL语句执行时间太慢,有什么优化措施?以及衍生的相关问题
java·数据库·sql·sql语句优化
qq_433554541 天前
C++ Dijkstra堆优化算法
开发语言·c++·算法
风槐啊1 天前
邪修实战系列(3)
java·ide·spring boot·spring·tomcat
咋吃都不胖lyh1 天前
SQL数据分析原代码--创建表与简单查询
java·数据库·sql