人脸识别之--计算余弦相似度-android

余弦相似度是比对两个向量是否一致,余弦相似度是通过计算两个向量的夹角余弦值来衡量它们之间的相似度,算出来的值可以直接用作相似度的分数。

公式:

余弦相似度和欧式距离经常用来人脸识别特征对比。

其中:

1、余弦相似度是通过计算两个向量的夹角余弦值来衡量它们之间的相似度

2、欧式距离是通过计算两个向量之间的欧氏距离来衡量它们之间的相似度

  • 余弦相似度的优点是在计算相似度时不受向量的绝对大小影响,只受向量的方向影响,因此适用于文本、图像等数据的相似度度量。
  • 欧式距离的优点是直观易理解,计算简单。但是欧式距离在计算高维稀疏数据时可能会受到维度灾难的影响,且对异常值敏感。

在人脸识别中余弦距离用的比较多。

这里用来计算两组特征值的相似度,具体代码如下:

复制代码
package com.hax.util;

import com.hax.vo.FaceInfo;

import java.util.List;

/**
 * add hmy
 * 人脸比对工具
 * 2024年6月12日16:34:22
 */
public class FaceUtils {

    // 计算平方值
    private static double euclideanNorm(double []vec) {
        double sum = 0.0;
        for (int i =0; i < vec.length; i++){
            sum += vec[i] * vec[i];
        }
        return Math.sqrt(sum);
    }
    // 计算平方值
    private static double euclideanNorm(List<Float> vec) {
        double sum = 0.0f;
        for (int i =0; i < vec.size(); i++){
            sum += vec.get(i) * vec.get(i);
        }
        return Math.sqrt(sum);
    }
    // 计算两个向量的点积
    private static double dotProduct(double[] vec1,double[] vec2) {

        double result = 0.0;
        for (int i = 0; i < vec1.length; ++i) {
            result += vec1[i] * vec2[i];
        }

        return result;
    }
    // 计算两个向量的点积
    private static double dotProduct(List<Float> vec1, List<Float> vec2) {

        double result = 0.0f;
        for (int i = 0; i < vec1.size(); ++i) {
            result += (vec1.get(i) * vec2.get(i));
        }

        return result;
    }
    //计算余弦相似度 返回具体分值
    public static double verification(FaceInfo src, FaceInfo dest) {
        double sim = dotProduct(src.getEmbed(), dest.getEmbed()) /
                (euclideanNorm(src.getEmbed()) * euclideanNorm(dest.getEmbed()));

        sim = 0.5 + sim * 0.5;//把-1到1的范围 隐射到0-1的范围 -1到0 映射0-0.5 0到0.5隐射到0.5-0.75 0.5到1 映射到0.75-1

        return sim;
    }
}

其中Embed值是List<Float> 值为512维。

相关推荐
sg_knight1 天前
Spring 框架中的 SseEmitter 使用详解
java·spring boot·后端·spring·spring cloud·sse·sseemitter
郑州光合科技余经理1 天前
同城系统海外版:一站式多语种O2O系统源码
java·开发语言·git·mysql·uni-app·go·phpstorm
一只乔哇噻1 天前
java后端工程师+AI大模型开发进修ing(研一版‖day60)
java·开发语言·人工智能·学习·语言模型
LNN20221 天前
Linuxfb+Qt 输入设备踩坑记:解决 “节点存在却无法读取“ 问题
开发语言·qt
Dolphin_Home1 天前
笔记:SpringBoot静态类调用Bean的2种方案(小白友好版)
java·spring boot·笔记
gihigo19981 天前
matlab 基于瑞利衰落信道的误码率分析
算法
foxsen_xia1 天前
go(基础06)——结构体取代类
开发语言·算法·golang
foxsen_xia1 天前
go(基础08)——多态
算法·golang
MetaverseMan1 天前
Java虚拟线程实战
java
leoufung1 天前
用三色 DFS 拿下 Course Schedule(LeetCode 207)
算法·leetcode·深度优先