卷积神经网络 convolution neural network

1.数学卷积:滑动窗口

2.图像具有局部相关性和平移不变性,有许多冗余的特征点,如果用全连接的神经网络会很浪费时间。

3.卷积nn:减少参数,滑动提取特征,特征作为下层卷积的输入,然后放到全连接层进行分类,再反向传播更新卷积核参数。但需要大量数据,可解释性不强。

4.卷积核 :一个卷积层上有多个卷积核,每个卷积核的权重参数不同,因此每个卷积核能提取一个特征,即生成不同的结果(对应元素相乘再求和)。每个卷积核能覆盖到一样大小的输入数据,通过滑动进而遍历整个输入数据。

5.感受野:是指特征图上的某个点能看到的输入图像的区域。卷积越深,一个点能看到的区域越大。设计较好的层数有利于提取更多特征。

左边的是输入,右边是层1,2

6.卷积层 / 滤波器:

7.通道:卷积核数就是通道数,

8.填充padding:图像外面2圈填0,可以让图像边缘的特征被卷积遍历更多次。

9.步幅stride:一次遍历多少,节省计算量

10.池化层pooling:max和average pooling

MP 特征降维,AP 打平

11.展平flatten:将特征图打平成线性,放入全连接层。

12.全连接层:把所有特征输入,最后得到一个分类

1x1卷积核作用

降维/升维

相关推荐
智驱力人工智能38 分钟前
小区高空抛物AI实时预警方案 筑牢社区头顶安全的实践 高空抛物检测 高空抛物监控安装教程 高空抛物误报率优化方案 高空抛物监控案例分享
人工智能·深度学习·opencv·算法·安全·yolo·边缘计算
qq_1601448742 分钟前
亲测!2026年零基础学AI的入门干货,新手照做就能上手
人工智能
Howie Zphile42 分钟前
全面预算管理难以落地的核心真相:“完美模型幻觉”的认知误区
人工智能·全面预算
人工不智能57744 分钟前
拆解 BERT:Output 中的 Hidden States 到底藏了什么秘密?
人工智能·深度学习·bert
盟接之桥1 小时前
盟接之桥说制造:引流品 × 利润品,全球电商平台高效产品组合策略(供讨论)
大数据·linux·服务器·网络·人工智能·制造
kfyty7251 小时前
集成 spring-ai 2.x 实践中遇到的一些问题及解决方案
java·人工智能·spring-ai
h64648564h1 小时前
CANN 性能剖析与调优全指南:从 Profiling 到 Kernel 级优化
人工智能·深度学习
数据与后端架构提升之路1 小时前
论系统安全架构设计及其应用(基于AI大模型项目)
人工智能·安全·系统安全
忆~遂愿1 小时前
ops-cv 算子库深度解析:面向视觉任务的硬件优化与数据布局(NCHW/NHWC)策略
java·大数据·linux·人工智能
Liue612312311 小时前
YOLO11-C3k2-MBRConv3改进提升金属表面缺陷检测与分类性能_焊接裂纹气孔飞溅物焊接线识别
人工智能·分类·数据挖掘