卷积神经网络 convolution neural network

1.数学卷积:滑动窗口

2.图像具有局部相关性和平移不变性,有许多冗余的特征点,如果用全连接的神经网络会很浪费时间。

3.卷积nn:减少参数,滑动提取特征,特征作为下层卷积的输入,然后放到全连接层进行分类,再反向传播更新卷积核参数。但需要大量数据,可解释性不强。

4.卷积核 :一个卷积层上有多个卷积核,每个卷积核的权重参数不同,因此每个卷积核能提取一个特征,即生成不同的结果(对应元素相乘再求和)。每个卷积核能覆盖到一样大小的输入数据,通过滑动进而遍历整个输入数据。

5.感受野:是指特征图上的某个点能看到的输入图像的区域。卷积越深,一个点能看到的区域越大。设计较好的层数有利于提取更多特征。

左边的是输入,右边是层1,2

6.卷积层 / 滤波器:

7.通道:卷积核数就是通道数,

8.填充padding:图像外面2圈填0,可以让图像边缘的特征被卷积遍历更多次。

9.步幅stride:一次遍历多少,节省计算量

10.池化层pooling:max和average pooling

MP 特征降维,AP 打平

11.展平flatten:将特征图打平成线性,放入全连接层。

12.全连接层:把所有特征输入,最后得到一个分类

1x1卷积核作用

降维/升维

相关推荐
人工智能训练3 小时前
【极速部署】Ubuntu24.04+CUDA13.0 玩转 VLLM 0.15.0:预编译 Wheel 包 GPU 版安装全攻略
运维·前端·人工智能·python·ai编程·cuda·vllm
源于花海4 小时前
迁移学习相关的期刊和会议
人工智能·机器学习·迁移学习·期刊会议
DisonTangor5 小时前
DeepSeek-OCR 2: 视觉因果流
人工智能·开源·aigc·ocr·deepseek
薛定谔的猫19826 小时前
二十一、基于 Hugging Face Transformers 实现中文情感分析情感分析
人工智能·自然语言处理·大模型 训练 调优
发哥来了6 小时前
《AI视频生成技术原理剖析及金管道·图生视频的应用实践》
人工智能
数智联AI团队6 小时前
AI搜索引领开源大模型新浪潮,技术创新重塑信息检索未来格局
人工智能·开源
不懒不懒6 小时前
【线性 VS 逻辑回归:一篇讲透两种核心回归模型】
人工智能·机器学习
冰西瓜6006 小时前
从项目入手机器学习——(四)特征工程(简单特征探索)
人工智能·机器学习
Ryan老房6 小时前
未来已来-AI标注工具的下一个10年
人工智能·yolo·目标检测·ai
丝斯20117 小时前
AI学习笔记整理(66)——多模态大模型MOE-LLAVA
人工智能·笔记·学习