分类预测 | TCN-BiGRU-Mutilhead-Attention时间卷积双向门控循环单元多头注意力机制多特征分类预测/故障识别Matlab实现

下面是一个基于TCN-BiGRU-Multihead-Attention的多特征分类预测/故障识别的简化示例的Matlab代码。请注意,这只是一个示例,并且可能需要根据您的具体数据和问题进行适当的修改和调整。

matlab

复制

% 步骤1:准备数据

% 假设有多个特征的训练集(train_data, train_labels)和测试集(test_data, test_labels)

% train_data和test_data是输入数据,train_labels和test_labels是对应的类别标签

% 步骤2:数据预处理

% 对输入数据进行必要的预处理,例如归一化、标准化等

% 步骤3:定义模型参数

input_size = size(train_data); % 输入数据的大小

num_classes = max(train_labels); % 类别数

% TCN参数

num_filters = 32; % 卷积核数量

filter_size = 3; % 卷积核大小

num_layers = 4; % TCN层数

dilations = [1, 2, 4, 8]; % 扩张因子

% BiGRU参数

hidden_size = 64; % 隐层大小

% Multihead Attention参数

num_heads = 4; % 注意力头数

attention_size = 32; % 注意力大小

% 步骤4:定义模型架构

model = [

sequenceInputLayer(input_size) % 输入层

复制代码
tcnLayers(num_filters, filter_size, num_layers, dilations) % TCN层
batchNormalizationLayer % 批归一化层

bidirectional(gruLayer(hidden_size, 'OutputMode', 'last')) % 双向GRU层
batchNormalizationLayer % 批归一化层

attentionLayer(num_heads, attention_size) % 多头注意力层

fullyConnectedLayer(num_classes) % 全连接层
softmaxLayer % softmax层
classificationLayer % 分类层

];

% 步骤5:模型训练

options = trainingOptions('adam', ...

'MaxEpochs', 10, ...

'MiniBatchSize', 32, ...

'ValidationData', {test_data, test_labels}, ...

'Plots', 'training-progress');

trained_model = trainNetwork(train_data, train_labels, model, options);

% 步骤6:模型评估

predicted_labels = classify(trained_model, test_data);

accuracy = sum(predicted_labels == test_labels) / numel(test_labels);

% 输出准确率

fprintf('准确率: %.2f%%\n', accuracy * 100);

相关推荐
listhi5203 小时前
基于空时阵列最佳旋转角度的卫星导航抗干扰信号处理的完整MATLAB仿真
开发语言·matlab·信号处理
大数据魔法师3 小时前
分类与回归算法(二) - 线性回归
分类·回归·线性回归
88号技师4 小时前
2025年7月一区SCI优化算法-Logistic-Gauss Circle optimizer-附Matlab免费代码
开发语言·算法·数学建模·matlab·优化算法
Dev7z8 小时前
基于ResNet50和PyTorch的猫狗图像分类系统设计与实现
人工智能·pytorch·分类
蒋星熠11 小时前
多模态技术深度探索:融合视觉与语言的AI新范式
人工智能·python·深度学习·机器学习·分类·数据挖掘·多分类
yugi98783811 小时前
基于MATLAB的心电信号去噪
开发语言·matlab
机器学习之心12 小时前
TCN-Transformer-GRU时间卷积神经网络结合编码器组合门控循环单元多特征分类预测Matlab实现
cnn·gru·transformer
gihigo19981 天前
MATLAB使用遗传算法解决车间资源分配动态调度问题
算法·matlab
路长冬1 天前
matlab与数字信号处理的不定期更新
开发语言·matlab·信号处理
算法与编程之美1 天前
探索不同的优化器对分类精度的影响和卷积层的输入输出的shape的计算公式
人工智能·深度学习·机器学习·分类·数据挖掘