分类预测 | TCN-BiGRU-Mutilhead-Attention时间卷积双向门控循环单元多头注意力机制多特征分类预测/故障识别Matlab实现

下面是一个基于TCN-BiGRU-Multihead-Attention的多特征分类预测/故障识别的简化示例的Matlab代码。请注意,这只是一个示例,并且可能需要根据您的具体数据和问题进行适当的修改和调整。

matlab

复制

% 步骤1:准备数据

% 假设有多个特征的训练集(train_data, train_labels)和测试集(test_data, test_labels)

% train_data和test_data是输入数据,train_labels和test_labels是对应的类别标签

% 步骤2:数据预处理

% 对输入数据进行必要的预处理,例如归一化、标准化等

% 步骤3:定义模型参数

input_size = size(train_data); % 输入数据的大小

num_classes = max(train_labels); % 类别数

% TCN参数

num_filters = 32; % 卷积核数量

filter_size = 3; % 卷积核大小

num_layers = 4; % TCN层数

dilations = [1, 2, 4, 8]; % 扩张因子

% BiGRU参数

hidden_size = 64; % 隐层大小

% Multihead Attention参数

num_heads = 4; % 注意力头数

attention_size = 32; % 注意力大小

% 步骤4:定义模型架构

model = [

sequenceInputLayer(input_size) % 输入层

复制代码
tcnLayers(num_filters, filter_size, num_layers, dilations) % TCN层
batchNormalizationLayer % 批归一化层

bidirectional(gruLayer(hidden_size, 'OutputMode', 'last')) % 双向GRU层
batchNormalizationLayer % 批归一化层

attentionLayer(num_heads, attention_size) % 多头注意力层

fullyConnectedLayer(num_classes) % 全连接层
softmaxLayer % softmax层
classificationLayer % 分类层

];

% 步骤5:模型训练

options = trainingOptions('adam', ...

'MaxEpochs', 10, ...

'MiniBatchSize', 32, ...

'ValidationData', {test_data, test_labels}, ...

'Plots', 'training-progress');

trained_model = trainNetwork(train_data, train_labels, model, options);

% 步骤6:模型评估

predicted_labels = classify(trained_model, test_data);

accuracy = sum(predicted_labels == test_labels) / numel(test_labels);

% 输出准确率

fprintf('准确率: %.2f%%\n', accuracy * 100);

相关推荐
rit84324997 小时前
基于MATLAB的SUSAN特征检测算子边缘提取实现
开发语言·matlab
t1987512810 小时前
广义预测控制(GPC)实现滞后系统控制 - MATLAB程序
开发语言·matlab
数据分享者11 小时前
猫狗图像分类数据集-21616张标准化128x128像素JPEG图像-适用于计算机视觉教学研究与深度学习模型训练-研究人员、开发者和学生提供实验平台
深度学习·计算机视觉·分类
duyinbi751711 小时前
【计算机视觉实践】:基于YOLOv8-BIMAFPN的海洋漏油事件检测与分类系统实现_2
yolo·计算机视觉·分类
jllllyuz11 小时前
单载波中继系统资源分配算法综述与实现
开发语言·matlab
bubiyoushang88812 小时前
基于MATLAB的非线性有限元梁扭矩分析实现
开发语言·matlab
duyinbi751714 小时前
YOLO11-MAN:多品种植物叶片智能识别与分类详解
人工智能·分类·数据挖掘
csdn_aspnet15 小时前
MATLAB 高效算法实战:数据分析与算法优化的效率秘诀
算法·matlab·数据分析
FL162386312915 小时前
七十四种不同鸟类图像分类数据集3995张74类别已划分好训练验证测试集
人工智能·分类·数据挖掘
byzh_rc16 小时前
[数字信号处理-入门] 采样定理
算法·matlab·信号处理