分类预测 | TCN-BiGRU-Mutilhead-Attention时间卷积双向门控循环单元多头注意力机制多特征分类预测/故障识别Matlab实现

下面是一个基于TCN-BiGRU-Multihead-Attention的多特征分类预测/故障识别的简化示例的Matlab代码。请注意,这只是一个示例,并且可能需要根据您的具体数据和问题进行适当的修改和调整。

matlab

复制

% 步骤1:准备数据

% 假设有多个特征的训练集(train_data, train_labels)和测试集(test_data, test_labels)

% train_data和test_data是输入数据,train_labels和test_labels是对应的类别标签

% 步骤2:数据预处理

% 对输入数据进行必要的预处理,例如归一化、标准化等

% 步骤3:定义模型参数

input_size = size(train_data); % 输入数据的大小

num_classes = max(train_labels); % 类别数

% TCN参数

num_filters = 32; % 卷积核数量

filter_size = 3; % 卷积核大小

num_layers = 4; % TCN层数

dilations = [1, 2, 4, 8]; % 扩张因子

% BiGRU参数

hidden_size = 64; % 隐层大小

% Multihead Attention参数

num_heads = 4; % 注意力头数

attention_size = 32; % 注意力大小

% 步骤4:定义模型架构

model = [

sequenceInputLayer(input_size) % 输入层

tcnLayers(num_filters, filter_size, num_layers, dilations) % TCN层
batchNormalizationLayer % 批归一化层

bidirectional(gruLayer(hidden_size, 'OutputMode', 'last')) % 双向GRU层
batchNormalizationLayer % 批归一化层

attentionLayer(num_heads, attention_size) % 多头注意力层

fullyConnectedLayer(num_classes) % 全连接层
softmaxLayer % softmax层
classificationLayer % 分类层

];

% 步骤5:模型训练

options = trainingOptions('adam', ...

'MaxEpochs', 10, ...

'MiniBatchSize', 32, ...

'ValidationData', {test_data, test_labels}, ...

'Plots', 'training-progress');

trained_model = trainNetwork(train_data, train_labels, model, options);

% 步骤6:模型评估

predicted_labels = classify(trained_model, test_data);

accuracy = sum(predicted_labels == test_labels) / numel(test_labels);

% 输出准确率

fprintf('准确率: %.2f%%\n', accuracy * 100);

相关推荐
CV学术叫叫兽2 小时前
快速图像识别:落叶植物叶片分类
人工智能·分类·数据挖掘
xrgs_shz2 小时前
MATLAB读入不同类型图像并显示图像和相关信息
图像处理·计算机视觉·matlab
CV学术叫叫兽4 小时前
一站式学习:害虫识别与分类图像分割
学习·分类·数据挖掘
Sxiaocai5 小时前
使用TensorFlow实现简化版 GoogLeNet 模型进行 MNIST 图像分类
分类·tensorflow·neo4j
zhangfeng11335 小时前
pytorch 的交叉熵函数,多分类,二分类
人工智能·pytorch·分类
火山口车神丶5 小时前
某车企ASW面试笔试题
c++·matlab
YRr YRr5 小时前
如何使用 PyTorch 实现图像分类数据集的加载和处理
pytorch·深度学习·分类
今天吃饺子6 小时前
2024年SCI一区最新改进优化算法——四参数自适应生长优化器,MATLAB代码免费获取...
开发语言·算法·matlab
Evand J18 小时前
集合卡尔曼滤波(Ensemble Kalman Filter),用于二维滤波(模拟平面上的目标跟踪),MATLAB代码
matlab·平面·目标跟踪
爱喝白开水a1 天前
Sentence-BERT实现文本匹配【分类目标函数】
人工智能·深度学习·机器学习·自然语言处理·分类·bert·大模型微调