分类预测 | TCN-BiGRU-Mutilhead-Attention时间卷积双向门控循环单元多头注意力机制多特征分类预测/故障识别Matlab实现

下面是一个基于TCN-BiGRU-Multihead-Attention的多特征分类预测/故障识别的简化示例的Matlab代码。请注意,这只是一个示例,并且可能需要根据您的具体数据和问题进行适当的修改和调整。

matlab

复制

% 步骤1:准备数据

% 假设有多个特征的训练集(train_data, train_labels)和测试集(test_data, test_labels)

% train_data和test_data是输入数据,train_labels和test_labels是对应的类别标签

% 步骤2:数据预处理

% 对输入数据进行必要的预处理,例如归一化、标准化等

% 步骤3:定义模型参数

input_size = size(train_data); % 输入数据的大小

num_classes = max(train_labels); % 类别数

% TCN参数

num_filters = 32; % 卷积核数量

filter_size = 3; % 卷积核大小

num_layers = 4; % TCN层数

dilations = [1, 2, 4, 8]; % 扩张因子

% BiGRU参数

hidden_size = 64; % 隐层大小

% Multihead Attention参数

num_heads = 4; % 注意力头数

attention_size = 32; % 注意力大小

% 步骤4:定义模型架构

model = [

sequenceInputLayer(input_size) % 输入层

复制代码
tcnLayers(num_filters, filter_size, num_layers, dilations) % TCN层
batchNormalizationLayer % 批归一化层

bidirectional(gruLayer(hidden_size, 'OutputMode', 'last')) % 双向GRU层
batchNormalizationLayer % 批归一化层

attentionLayer(num_heads, attention_size) % 多头注意力层

fullyConnectedLayer(num_classes) % 全连接层
softmaxLayer % softmax层
classificationLayer % 分类层

];

% 步骤5:模型训练

options = trainingOptions('adam', ...

'MaxEpochs', 10, ...

'MiniBatchSize', 32, ...

'ValidationData', {test_data, test_labels}, ...

'Plots', 'training-progress');

trained_model = trainNetwork(train_data, train_labels, model, options);

% 步骤6:模型评估

predicted_labels = classify(trained_model, test_data);

accuracy = sum(predicted_labels == test_labels) / numel(test_labels);

% 输出准确率

fprintf('准确率: %.2f%%\n', accuracy * 100);

相关推荐
Blossom.1185 小时前
基于深度学习的图像分类:使用Capsule Networks实现高效分类
人工智能·python·深度学习·神经网络·机器学习·分类·数据挖掘
go546315846512 小时前
Python点阵字生成与优化:从基础实现到高级渲染技术
开发语言·人工智能·python·深度学习·分类·数据挖掘
简简单单做算法17 小时前
基于LSTM深度学习网络的视频类型分类算法matlab仿真
深度学习·matlab·分类·lstm·视频类型分类
优宁维生物1 天前
血液样本的分类与应用
人工智能·分类·数据挖掘
Blossom.1181 天前
基于深度学习的图像分类:使用DenseNet实现高效分类
人工智能·深度学习·目标检测·机器学习·分类·数据挖掘·迁移学习
机器学习之心1 天前
三种深度学习模型(GRU、CNN-GRU、贝叶斯优化的CNN-GRU/BO-CNN-GRU)对北半球光伏数据进行时间序列预测
gru·cnn-gru·贝叶斯优化的cnn-gru
从零开始学习人工智能1 天前
智能问答分类系统:基于SVM的用户意图识别
支持向量机·分类·数据挖掘
2zcode2 天前
基于Matlab图像处理的水果分级系统
图像处理·人工智能·matlab
wh_xia_jun2 天前
基于深度学习的胸部 X 光图像肺炎分类系统(四)
人工智能·深度学习·分类
Blossom.1182 天前
基于深度学习的图像分类:使用预训练模型进行迁移学习
人工智能·深度学习·目标检测·分类·音视频·语音识别·迁移学习