-
Batch Normalization 可以
改善梯度消失/爆炸问题:前面层的梯度经过多次传递后会变得非常小(大),从而导致网络收敛速度慢(不收敛),应用 BN 可缓解加速网络收敛:BN 使得每个神经元的输入分布更加稳定减少过拟合:BN 可减少由于数据分布的变化导致的模型性能下降提高模型泛化能力:BN 使得模型对输入的微小变化更加稳定缓解超参敏感:对于 learning rate 等超参数敏感性降低- ...

-
Batch Normalization(BN):使 feature map 满足均值为 0,方差为 1 的分布规律
- 如果batch size为m,则在前向传播过程中,网络中每个节点都有m个输出,所谓的Batch Normalization,就是对该层每个节点的这m个输出进行归一化再输出
- 数学表达:每个 channel 下统计一个对应的均值和方差
x norm = x − E [ x ] V a r [ x ] + ϵ ∗ γ + β x_{\text{norm}} = \frac{x - \mathbb{E}[x]}{\sqrt{Var[x]+\epsilon}} * \gamma + \beta xnorm=Var[x]+ϵ x−E[x]∗γ+β- 其中 γ , β \gamma, \beta γ,β 为可学习的参数
-
代码实践:
python3>>> import torch >>> import torch.nn as nn >>> >>> x = torch.rand(2,1,28,28) ## *0.创建输入 x >>> bn = nn.BatchNorm2d( ## *1. 创建 bn 层, 1, # -- 输入的 channel 数 training = False, # -- 是否为训练模式 affine = False) # -- 是否学习 γ β >>> out = bn(x) ## *2 获取输出 >>> # 查看相关数值 ------------------------------------------------ >>> bn.running_mean # 均值 tensor([0.0507]) >>> bn.running_var # 方差 tensor([0.9080]) >>> bn.weight # γ Parameter containing: tensor([1.], requires_grad=True) >>> bn.bias # β Parameter containing: tensor([0.], requires_grad=True)
PyTorch -- Batch Normalization(BN) 快速实践
CODE_RabbitV2024-06-16 5:05
相关推荐
AI营销资讯站2 分钟前
原圈科技AI营销内容生产体系助力企业降本提效新变革AI科技星2 分钟前
质量定义方程中条数概念的解析与经典例子计算啊阿狸不会拉杆2 分钟前
《数字图像处理》第8章-图像压缩和水印智航GIS4 分钟前
ArcGIS大师之路500技---034重采样算法选择~央千澈~4 分钟前
序章《程序员进化:AI 编程革命》——用 Cursor 驱动的游戏开发实战作者:卓伊凡风途知识百科5 分钟前
专用气象设备 —— 光伏气象站与防爆气象站[特殊字符]!roman_日积跬步-终至千里7 分钟前
【计算机视觉18-2】语义理解-CNN架构设计_VGG_Inception_ResNet摄影图7 分钟前
卫星插画推荐:星轨下的科技美学像素漫画图赏存储国产化前线7 分钟前
国产工业级存储进阶之路:从自主可控主控到可靠可用的全链路突围