PyTorch -- Batch Normalization(BN) 快速实践

  • Batch Normalization 可以

    • 改善梯度消失/爆炸问题:前面层的梯度经过多次传递后会变得非常小(大),从而导致网络收敛速度慢(不收敛),应用 BN 可缓解
    • 加速网络收敛:BN 使得每个神经元的输入分布更加稳定
    • 减少过拟合:BN 可减少由于数据分布的变化导致的模型性能下降
    • 提高模型泛化能力:BN 使得模型对输入的微小变化更加稳定
    • 缓解超参敏感:对于 learning rate 等超参数敏感性降低
    • ...
  • Batch Normalization(BN):使 feature map 满足均值为 0,方差为 1 的分布规律

    • 如果batch size为m,则在前向传播过程中,网络中每个节点都有m个输出,所谓的Batch Normalization,就是对该层每个节点的这m个输出进行归一化再输出
    • 数学表达:每个 channel 下统计一个对应的均值和方差
      x norm = x − E [ x ] V a r [ x ] + ϵ ∗ γ + β x_{\text{norm}} = \frac{x - \mathbb{E}[x]}{\sqrt{Var[x]+\epsilon}} * \gamma + \beta xnorm=Var[x]+ϵ x−E[x]∗γ+β
      • 其中 γ , β \gamma, \beta γ,β 为可学习的参数

  • 代码实践:

    python3 复制代码
    >>> import torch
    >>> import torch.nn as nn
    >>>
    >>> x = torch.rand(2,1,28,28)   		## *0.创建输入 x 
    >>> bn = nn.BatchNorm2d(				## *1. 创建 bn 层,
    						1,  				# -- 输入的 channel 数
    						training = False, 	# -- 是否为训练模式
    						affine = False) 	# -- 是否学习 γ β 				
    >>> out = bn(x) 						## *2 获取输出
    
    >>> # 查看相关数值 ------------------------------------------------
    >>> bn.running_mean					# 均值
    tensor([0.0507])
    >>> bn.running_var 					# 方差
    tensor([0.9080])
    >>> bn.weight						# γ
    Parameter containing:
    tensor([1.], requires_grad=True)
    >>> bn.bias							# β
    Parameter containing:
    tensor([0.], requires_grad=True)

相关推荐
开发者每周简报35 分钟前
求职市场变化
人工智能·面试·职场和发展
AI前沿技术追踪1 小时前
OpenAI 12天发布会:AI革命的里程碑@附35页PDF文件下载
人工智能
余~~185381628001 小时前
稳定的碰一碰发视频、碰一碰矩阵源码技术开发,支持OEM
开发语言·人工智能·python·音视频
galileo20161 小时前
LLM与金融
人工智能
DREAM依旧2 小时前
隐马尔科夫模型|前向算法|Viterbi 算法
人工智能
GocNeverGiveUp2 小时前
机器学习2-NumPy
人工智能·机器学习·numpy
B站计算机毕业设计超人3 小时前
计算机毕业设计PySpark+Hadoop中国城市交通分析与预测 Python交通预测 Python交通可视化 客流量预测 交通大数据 机器学习 深度学习
大数据·人工智能·爬虫·python·机器学习·课程设计·数据可视化
学术头条3 小时前
清华、智谱团队:探索 RLHF 的 scaling laws
人工智能·深度学习·算法·机器学习·语言模型·计算语言学
18号房客3 小时前
一个简单的机器学习实战例程,使用Scikit-Learn库来完成一个常见的分类任务——**鸢尾花数据集(Iris Dataset)**的分类
人工智能·深度学习·神经网络·机器学习·语言模型·自然语言处理·sklearn
feifeikon3 小时前
机器学习DAY3 : 线性回归与最小二乘法与sklearn实现 (线性回归完)
人工智能·机器学习·线性回归