PyTorch -- Batch Normalization(BN) 快速实践

  • Batch Normalization 可以

    • 改善梯度消失/爆炸问题:前面层的梯度经过多次传递后会变得非常小(大),从而导致网络收敛速度慢(不收敛),应用 BN 可缓解
    • 加速网络收敛:BN 使得每个神经元的输入分布更加稳定
    • 减少过拟合:BN 可减少由于数据分布的变化导致的模型性能下降
    • 提高模型泛化能力:BN 使得模型对输入的微小变化更加稳定
    • 缓解超参敏感:对于 learning rate 等超参数敏感性降低
    • ...
  • Batch Normalization(BN):使 feature map 满足均值为 0,方差为 1 的分布规律

    • 如果batch size为m,则在前向传播过程中,网络中每个节点都有m个输出,所谓的Batch Normalization,就是对该层每个节点的这m个输出进行归一化再输出
    • 数学表达:每个 channel 下统计一个对应的均值和方差
      x norm = x − E [ x ] V a r [ x ] + ϵ ∗ γ + β x_{\text{norm}} = \frac{x - \mathbb{E}[x]}{\sqrt{Var[x]+\epsilon}} * \gamma + \beta xnorm=Var[x]+ϵ x−E[x]∗γ+β
      • 其中 γ , β \gamma, \beta γ,β 为可学习的参数

  • 代码实践:

    python3 复制代码
    >>> import torch
    >>> import torch.nn as nn
    >>>
    >>> x = torch.rand(2,1,28,28)   		## *0.创建输入 x 
    >>> bn = nn.BatchNorm2d(				## *1. 创建 bn 层,
    						1,  				# -- 输入的 channel 数
    						training = False, 	# -- 是否为训练模式
    						affine = False) 	# -- 是否学习 γ β 				
    >>> out = bn(x) 						## *2 获取输出
    
    >>> # 查看相关数值 ------------------------------------------------
    >>> bn.running_mean					# 均值
    tensor([0.0507])
    >>> bn.running_var 					# 方差
    tensor([0.9080])
    >>> bn.weight						# γ
    Parameter containing:
    tensor([1.], requires_grad=True)
    >>> bn.bias							# β
    Parameter containing:
    tensor([0.], requires_grad=True)

相关推荐
AI即插即用7 分钟前
即插即用系列 | AAAI 2026 WaveFormer: 当视觉建模遇上波动方程,频率-时间解耦的新SOTA
图像处理·人工智能·深度学习·神经网络·计算机视觉·视觉检测
轻览月8 分钟前
【DL】复杂卷积神经网络Ⅰ
人工智能·神经网络·cnn
逄逄不是胖胖17 分钟前
《动手学深度学习》-55-2RNN的简单实现
人工智能·深度学习
冰菓Neko18 分钟前
科目四刷题总结
人工智能
guizhoumen19 分钟前
2026年建站系统推荐及选项指南
大数据·运维·人工智能
咚咚王者25 分钟前
人工智能之核心技术 深度学习 第四章 循环神经网络(RNN)与序列模型
人工智能·rnn·深度学习
蘑菇物联28 分钟前
蘑菇物联入选“预见·2026”年度双榜,以AI技术赋能制造业绿色转型!
大数据·人工智能
无忧智库32 分钟前
智慧城市核心标准全景解析:从顶层设计到落地实践的深度解读(PPT)
人工智能·智慧城市
2501_9421917743 分钟前
【YOLOv26实战】健身器材物体检测与识别:从模型优化到实际应用
人工智能·yolo·目标跟踪
m0_466525291 小时前
东软与葫芦岛市民政局签约 共建智慧养老服务平台
大数据·人工智能