-
Batch Normalization 可以
改善梯度消失/爆炸问题:前面层的梯度经过多次传递后会变得非常小(大),从而导致网络收敛速度慢(不收敛),应用 BN 可缓解加速网络收敛:BN 使得每个神经元的输入分布更加稳定减少过拟合:BN 可减少由于数据分布的变化导致的模型性能下降提高模型泛化能力:BN 使得模型对输入的微小变化更加稳定缓解超参敏感:对于 learning rate 等超参数敏感性降低- ...

-
Batch Normalization(BN):使 feature map 满足均值为 0,方差为 1 的分布规律
- 如果batch size为m,则在前向传播过程中,网络中每个节点都有m个输出,所谓的Batch Normalization,就是对该层每个节点的这m个输出进行归一化再输出
- 数学表达:每个 channel 下统计一个对应的均值和方差
x norm = x − E [ x ] V a r [ x ] + ϵ ∗ γ + β x_{\text{norm}} = \frac{x - \mathbb{E}[x]}{\sqrt{Var[x]+\epsilon}} * \gamma + \beta xnorm=Var[x]+ϵ x−E[x]∗γ+β- 其中 γ , β \gamma, \beta γ,β 为可学习的参数
-
代码实践:
python3>>> import torch >>> import torch.nn as nn >>> >>> x = torch.rand(2,1,28,28) ## *0.创建输入 x >>> bn = nn.BatchNorm2d( ## *1. 创建 bn 层, 1, # -- 输入的 channel 数 training = False, # -- 是否为训练模式 affine = False) # -- 是否学习 γ β >>> out = bn(x) ## *2 获取输出 >>> # 查看相关数值 ------------------------------------------------ >>> bn.running_mean # 均值 tensor([0.0507]) >>> bn.running_var # 方差 tensor([0.9080]) >>> bn.weight # γ Parameter containing: tensor([1.], requires_grad=True) >>> bn.bias # β Parameter containing: tensor([0.], requires_grad=True)
PyTorch -- Batch Normalization(BN) 快速实践
CODE_RabbitV2024-06-16 5:05
相关推荐
Danceful_YJ13 小时前
31.注意力评分函数机器之心13 小时前
李飞飞最新长文:AI的下一个十年——构建真正具备空间智能的机器机器之心13 小时前
豆包编程模型来了,我们用四个关卡考了考它!阿里云大数据AI技术13 小时前
让 ETL 更懂语义:DataWorks 支持数据集成 AI 辅助处理能力hoiii18713 小时前
基于交替方向乘子法(ADMM)的RPCA MATLAB实现Elastic 中国社区官方博客14 小时前
Elasticsearch:如何为 Elastic Stack 部署 E5 模型 - 下载及隔离环境xier_ran14 小时前
深度学习:神经网络中的参数和超参数8Qi814 小时前
伪装图像生成之——GAN与Diffusion阿里云大数据AI技术15 小时前
PAI Physical AI Notebook详解2:基于Cosmos世界模型的操作动作数据扩增与模仿学习傻啦嘿哟15 小时前
Python高效实现Word转HTML:从基础到进阶的全流程方案