-
Batch Normalization 可以
改善梯度消失/爆炸问题:前面层的梯度经过多次传递后会变得非常小(大),从而导致网络收敛速度慢(不收敛),应用 BN 可缓解加速网络收敛:BN 使得每个神经元的输入分布更加稳定减少过拟合:BN 可减少由于数据分布的变化导致的模型性能下降提高模型泛化能力:BN 使得模型对输入的微小变化更加稳定缓解超参敏感:对于 learning rate 等超参数敏感性降低- ...

-
Batch Normalization(BN):使 feature map 满足均值为 0,方差为 1 的分布规律
- 如果batch size为m,则在前向传播过程中,网络中每个节点都有m个输出,所谓的Batch Normalization,就是对该层每个节点的这m个输出进行归一化再输出
- 数学表达:每个 channel 下统计一个对应的均值和方差
x norm = x − E [ x ] V a r [ x ] + ϵ ∗ γ + β x_{\text{norm}} = \frac{x - \mathbb{E}[x]}{\sqrt{Var[x]+\epsilon}} * \gamma + \beta xnorm=Var[x]+ϵ x−E[x]∗γ+β- 其中 γ , β \gamma, \beta γ,β 为可学习的参数
-
代码实践:
python3>>> import torch >>> import torch.nn as nn >>> >>> x = torch.rand(2,1,28,28) ## *0.创建输入 x >>> bn = nn.BatchNorm2d( ## *1. 创建 bn 层, 1, # -- 输入的 channel 数 training = False, # -- 是否为训练模式 affine = False) # -- 是否学习 γ β >>> out = bn(x) ## *2 获取输出 >>> # 查看相关数值 ------------------------------------------------ >>> bn.running_mean # 均值 tensor([0.0507]) >>> bn.running_var # 方差 tensor([0.9080]) >>> bn.weight # γ Parameter containing: tensor([1.], requires_grad=True) >>> bn.bias # β Parameter containing: tensor([0.], requires_grad=True)
PyTorch -- Batch Normalization(BN) 快速实践
CODE_RabbitV2024-06-16 5:05
相关推荐
猿小羽1 分钟前
探索 Codex:AI 编程助手的未来潜力菜青虫嘟嘟6 分钟前
Expert Iteration:一种无需人工标注即可显著提升大语言模型推理能力的简单方法核心玄同76511 分钟前
LangChain v1.0+ Retrieval模块完全指南:从文档加载到RAG实战deepdata_cn18 分钟前
为什么AI需要因果?说私域29 分钟前
社群招募文案的核心构建要点与工具赋能路径——基于AI智能名片链动2+1模式商城小程序的实践研究LaughingZhu30 分钟前
Product Hunt 每日热榜 | 2026-01-31下午写HelloWorld32 分钟前
一维卷积神经网络 (1D CNN)Sagittarius_A*33 分钟前
形态学与多尺度处理:计算机视觉中图像形状与尺度的基础处理框架【计算机视觉】小润nature42 分钟前
Moltbot/OpenClaw Gateway 命令和交互tongxianchao43 分钟前
TOKEN MERGING YOUR VIT BUT FASTER