-
Batch Normalization 可以
改善梯度消失/爆炸问题:前面层的梯度经过多次传递后会变得非常小(大),从而导致网络收敛速度慢(不收敛),应用 BN 可缓解加速网络收敛:BN 使得每个神经元的输入分布更加稳定减少过拟合:BN 可减少由于数据分布的变化导致的模型性能下降提高模型泛化能力:BN 使得模型对输入的微小变化更加稳定缓解超参敏感:对于 learning rate 等超参数敏感性降低- ...

-
Batch Normalization(BN):使 feature map 满足均值为 0,方差为 1 的分布规律
- 如果batch size为m,则在前向传播过程中,网络中每个节点都有m个输出,所谓的Batch Normalization,就是对该层每个节点的这m个输出进行归一化再输出
- 数学表达:每个 channel 下统计一个对应的均值和方差
x norm = x − E [ x ] V a r [ x ] + ϵ ∗ γ + β x_{\text{norm}} = \frac{x - \mathbb{E}[x]}{\sqrt{Var[x]+\epsilon}} * \gamma + \beta xnorm=Var[x]+ϵ x−E[x]∗γ+β- 其中 γ , β \gamma, \beta γ,β 为可学习的参数
-
代码实践:
python3>>> import torch >>> import torch.nn as nn >>> >>> x = torch.rand(2,1,28,28) ## *0.创建输入 x >>> bn = nn.BatchNorm2d( ## *1. 创建 bn 层, 1, # -- 输入的 channel 数 training = False, # -- 是否为训练模式 affine = False) # -- 是否学习 γ β >>> out = bn(x) ## *2 获取输出 >>> # 查看相关数值 ------------------------------------------------ >>> bn.running_mean # 均值 tensor([0.0507]) >>> bn.running_var # 方差 tensor([0.9080]) >>> bn.weight # γ Parameter containing: tensor([1.], requires_grad=True) >>> bn.bias # β Parameter containing: tensor([0.], requires_grad=True)
PyTorch -- Batch Normalization(BN) 快速实践
CODE_RabbitV2024-06-16 5:05
相关推荐
福大大架构师每日一题4 小时前
PyTorch v2.9.1 发布:重要 Bug 修复与性能优化详解海阔的天空4 小时前
VSCode通过continue插件免费安装AI模型实现自动编程老段工作室4 小时前
微调自动语音识别模型(ASR),精准识别各种不标准发音 及蹩脚英文发音吃肉夹馍不要夹馍4 小时前
【opencv图片倾斜矫正】sca1p314 小时前
新南威尔士大学 LiMweixin_457760005 小时前
EIOU (Efficient IoU): 高效边界框回归损失的解析美团技术团队5 小时前
AI Coding与单元测试的协同进化:从验证到驱动曹工不加班5 小时前
n8n 实战:工作流自动发布排版精美的公众号文章ytttr8735 小时前
基于自适应分水岭和亲和传播聚类的彩色图像分割通义灵码5 小时前
用 AI 开发 AI:FunQ 背后的 Qoder 最佳实践分享