PyTorch -- Batch Normalization(BN) 快速实践

  • Batch Normalization 可以

    • 改善梯度消失/爆炸问题:前面层的梯度经过多次传递后会变得非常小(大),从而导致网络收敛速度慢(不收敛),应用 BN 可缓解
    • 加速网络收敛:BN 使得每个神经元的输入分布更加稳定
    • 减少过拟合:BN 可减少由于数据分布的变化导致的模型性能下降
    • 提高模型泛化能力:BN 使得模型对输入的微小变化更加稳定
    • 缓解超参敏感:对于 learning rate 等超参数敏感性降低
    • ...
  • Batch Normalization(BN):使 feature map 满足均值为 0,方差为 1 的分布规律

    • 如果batch size为m,则在前向传播过程中,网络中每个节点都有m个输出,所谓的Batch Normalization,就是对该层每个节点的这m个输出进行归一化再输出
    • 数学表达:每个 channel 下统计一个对应的均值和方差
      x norm = x − E [ x ] V a r [ x ] + ϵ ∗ γ + β x_{\text{norm}} = \frac{x - \mathbb{E}[x]}{\sqrt{Var[x]+\epsilon}} * \gamma + \beta xnorm=Var[x]+ϵ x−E[x]∗γ+β
      • 其中 γ , β \gamma, \beta γ,β 为可学习的参数

  • 代码实践:

    python3 复制代码
    >>> import torch
    >>> import torch.nn as nn
    >>>
    >>> x = torch.rand(2,1,28,28)   		## *0.创建输入 x 
    >>> bn = nn.BatchNorm2d(				## *1. 创建 bn 层,
    						1,  				# -- 输入的 channel 数
    						training = False, 	# -- 是否为训练模式
    						affine = False) 	# -- 是否学习 γ β 				
    >>> out = bn(x) 						## *2 获取输出
    
    >>> # 查看相关数值 ------------------------------------------------
    >>> bn.running_mean					# 均值
    tensor([0.0507])
    >>> bn.running_var 					# 方差
    tensor([0.9080])
    >>> bn.weight						# γ
    Parameter containing:
    tensor([1.], requires_grad=True)
    >>> bn.bias							# β
    Parameter containing:
    tensor([0.], requires_grad=True)

相关推荐
飞哥数智坊7 分钟前
不再记得代码细节?别慌,你正在经历 AI 时代的编程能力重塑
人工智能·ai编程
雲_kumo16 分钟前
从零开始读懂Transformer:架构解析与PyTorch实现
pytorch·架构·transformer
Juchecar28 分钟前
人工智能这一波浪潮会不一样吗?
人工智能
zzfive33 分钟前
Ovi-音视频生成模型
论文阅读·人工智能·深度学习·音视频
无风听海38 分钟前
神经网络之计算图
人工智能·深度学习·神经网络
摘星编程43 分钟前
RAG系统搭建指南:5种主流框架的易用性和效果对比
人工智能
荔园微风1 小时前
ML.NET机器学习框架基本流程介绍
人工智能·机器学习·.net
点云SLAM1 小时前
矩阵奇异值分解算法(SVD)的导数 / 灵敏度分析
人工智能·线性代数·算法·机器学习·矩阵·数据压缩·svd算法
仁懋-MOT半导体1 小时前
高效能源转换的关健|仁懋MOSFET在逆变器领域的突破应用
人工智能·硬件工程·能源·创业创新·制造
JAVA学习通1 小时前
Spring AI 1.0 GA 深度解析:Java生态的AI革命已来
java·人工智能·spring·springai