-
Batch Normalization 可以
改善梯度消失/爆炸问题:前面层的梯度经过多次传递后会变得非常小(大),从而导致网络收敛速度慢(不收敛),应用 BN 可缓解加速网络收敛:BN 使得每个神经元的输入分布更加稳定减少过拟合:BN 可减少由于数据分布的变化导致的模型性能下降提高模型泛化能力:BN 使得模型对输入的微小变化更加稳定缓解超参敏感:对于 learning rate 等超参数敏感性降低- ...

-
Batch Normalization(BN):使 feature map 满足均值为 0,方差为 1 的分布规律
- 如果batch size为m,则在前向传播过程中,网络中每个节点都有m个输出,所谓的Batch Normalization,就是对该层每个节点的这m个输出进行归一化再输出
- 数学表达:每个 channel 下统计一个对应的均值和方差
x norm = x − E [ x ] V a r [ x ] + ϵ ∗ γ + β x_{\text{norm}} = \frac{x - \mathbb{E}[x]}{\sqrt{Var[x]+\epsilon}} * \gamma + \beta xnorm=Var[x]+ϵ x−E[x]∗γ+β- 其中 γ , β \gamma, \beta γ,β 为可学习的参数
-
代码实践:
python3>>> import torch >>> import torch.nn as nn >>> >>> x = torch.rand(2,1,28,28) ## *0.创建输入 x >>> bn = nn.BatchNorm2d( ## *1. 创建 bn 层, 1, # -- 输入的 channel 数 training = False, # -- 是否为训练模式 affine = False) # -- 是否学习 γ β >>> out = bn(x) ## *2 获取输出 >>> # 查看相关数值 ------------------------------------------------ >>> bn.running_mean # 均值 tensor([0.0507]) >>> bn.running_var # 方差 tensor([0.9080]) >>> bn.weight # γ Parameter containing: tensor([1.], requires_grad=True) >>> bn.bias # β Parameter containing: tensor([0.], requires_grad=True)
PyTorch -- Batch Normalization(BN) 快速实践
CODE_RabbitV2024-06-16 5:05
相关推荐
ASKED_201935 分钟前
End-To-End之于推荐: Meta GRs & HSTU 生成式推荐革命之作liulanba42 分钟前
AI Agent技术完整指南 第一部分:基础理论自动化代码美学43 分钟前
【AI白皮书】AI应用运行时小CC吃豆子1 小时前
openGauss :核心定位 + 核心优势 + 适用场景一瞬祈望1 小时前
⭐ 深度学习入门体系(第 7 篇): 什么是损失函数?徐小夕@趣谈前端1 小时前
15k star的开源项目 Next AI Draw.io:AI 加持下的图表绘制工具优爱蛋白1 小时前
MMP-9(20-469) His Tag 蛋白:高活性可溶性催化结构域的研究工具阿正的梦工坊1 小时前
Kronecker积详解Rui_Freely1 小时前
Vins-Fusion之ROS2(节点创建、订阅者、发布者)(一)快降重1 小时前
投稿前的“精准体检”:自查查重,如何选择可靠的第三方工具?