PyTorch -- Batch Normalization(BN) 快速实践

  • Batch Normalization 可以

    • 改善梯度消失/爆炸问题:前面层的梯度经过多次传递后会变得非常小(大),从而导致网络收敛速度慢(不收敛),应用 BN 可缓解
    • 加速网络收敛:BN 使得每个神经元的输入分布更加稳定
    • 减少过拟合:BN 可减少由于数据分布的变化导致的模型性能下降
    • 提高模型泛化能力:BN 使得模型对输入的微小变化更加稳定
    • 缓解超参敏感:对于 learning rate 等超参数敏感性降低
    • ...
  • Batch Normalization(BN):使 feature map 满足均值为 0,方差为 1 的分布规律

    • 如果batch size为m,则在前向传播过程中,网络中每个节点都有m个输出,所谓的Batch Normalization,就是对该层每个节点的这m个输出进行归一化再输出
    • 数学表达:每个 channel 下统计一个对应的均值和方差
      x norm = x − E [ x ] V a r [ x ] + ϵ ∗ γ + β x_{\text{norm}} = \frac{x - \mathbb{E}[x]}{\sqrt{Var[x]+\epsilon}} * \gamma + \beta xnorm=Var[x]+ϵ x−E[x]∗γ+β
      • 其中 γ , β \gamma, \beta γ,β 为可学习的参数

  • 代码实践:

    python3 复制代码
    >>> import torch
    >>> import torch.nn as nn
    >>>
    >>> x = torch.rand(2,1,28,28)   		## *0.创建输入 x 
    >>> bn = nn.BatchNorm2d(				## *1. 创建 bn 层,
    						1,  				# -- 输入的 channel 数
    						training = False, 	# -- 是否为训练模式
    						affine = False) 	# -- 是否学习 γ β 				
    >>> out = bn(x) 						## *2 获取输出
    
    >>> # 查看相关数值 ------------------------------------------------
    >>> bn.running_mean					# 均值
    tensor([0.0507])
    >>> bn.running_var 					# 方差
    tensor([0.9080])
    >>> bn.weight						# γ
    Parameter containing:
    tensor([1.], requires_grad=True)
    >>> bn.bias							# β
    Parameter containing:
    tensor([0.], requires_grad=True)

相关推荐
reddingtons1 小时前
Adobe Firefly AI驱动设计:实用技巧与创新思维路径
大数据·人工智能·adobe·illustrator·photoshop·premiere·indesign
CertiK1 小时前
IBW 2025: CertiK首席商务官出席,探讨AI与Web3融合带来的安全挑战
人工智能·安全·web3
Deepoch2 小时前
Deepoc 大模型在无人机行业应用效果的方法
人工智能·科技·ai·语言模型·无人机
Deepoch2 小时前
Deepoc 大模型:无人机行业的智能变革引擎
人工智能·科技·算法·ai·动态规划·无人机
kngines2 小时前
【字节跳动】数据挖掘面试题0003:有一个文件,每一行是一个数字,如何用 MapReduce 进行排序和求每个用户每个页面停留时间
人工智能·数据挖掘·mapreduce·面试题
Binary_ey2 小时前
AR衍射光波导设计遇瓶颈,OAS 光学软件来破局
人工智能·软件需求·光学软件·光波导
昵称是6硬币2 小时前
YOLOv11: AN OVERVIEW OF THE KEY ARCHITECTURAL ENHANCEMENTS目标检测论文精读(逐段解析)
图像处理·人工智能·深度学习·yolo·目标检测·计算机视觉
平和男人杨争争3 小时前
机器学习2——贝叶斯理论下
人工智能·机器学习
静心问道3 小时前
XLSR-Wav2Vec2:用于语音识别的无监督跨语言表示学习
人工智能·学习·语音识别
算家计算3 小时前
5 秒预览物理世界,2 行代码启动生成——ComfyUI-Cosmos-Predict2 本地部署教程,重塑机器人训练范式!
人工智能·开源