PyTorch -- Batch Normalization(BN) 快速实践

  • Batch Normalization 可以

    • 改善梯度消失/爆炸问题:前面层的梯度经过多次传递后会变得非常小(大),从而导致网络收敛速度慢(不收敛),应用 BN 可缓解
    • 加速网络收敛:BN 使得每个神经元的输入分布更加稳定
    • 减少过拟合:BN 可减少由于数据分布的变化导致的模型性能下降
    • 提高模型泛化能力:BN 使得模型对输入的微小变化更加稳定
    • 缓解超参敏感:对于 learning rate 等超参数敏感性降低
    • ...
  • Batch Normalization(BN):使 feature map 满足均值为 0,方差为 1 的分布规律

    • 如果batch size为m,则在前向传播过程中,网络中每个节点都有m个输出,所谓的Batch Normalization,就是对该层每个节点的这m个输出进行归一化再输出
    • 数学表达:每个 channel 下统计一个对应的均值和方差
      x norm = x − E [ x ] V a r [ x ] + ϵ ∗ γ + β x_{\text{norm}} = \frac{x - \mathbb{E}[x]}{\sqrt{Var[x]+\epsilon}} * \gamma + \beta xnorm=Var[x]+ϵ x−E[x]∗γ+β
      • 其中 γ , β \gamma, \beta γ,β 为可学习的参数

  • 代码实践:

    python3 复制代码
    >>> import torch
    >>> import torch.nn as nn
    >>>
    >>> x = torch.rand(2,1,28,28)   		## *0.创建输入 x 
    >>> bn = nn.BatchNorm2d(				## *1. 创建 bn 层,
    						1,  				# -- 输入的 channel 数
    						training = False, 	# -- 是否为训练模式
    						affine = False) 	# -- 是否学习 γ β 				
    >>> out = bn(x) 						## *2 获取输出
    
    >>> # 查看相关数值 ------------------------------------------------
    >>> bn.running_mean					# 均值
    tensor([0.0507])
    >>> bn.running_var 					# 方差
    tensor([0.9080])
    >>> bn.weight						# γ
    Parameter containing:
    tensor([1.], requires_grad=True)
    >>> bn.bias							# β
    Parameter containing:
    tensor([0.], requires_grad=True)

相关推荐
Ronin-Lotus7 分钟前
深度学习篇---剪裁&缩放
图像处理·人工智能·缩放·剪裁
cpsvps43 分钟前
3D芯片香港集成:技术突破与产业机遇全景分析
人工智能·3d
国科安芯1 小时前
抗辐照芯片在低轨卫星星座CAN总线通讯及供电系统的应用探讨
运维·网络·人工智能·单片机·自动化
AKAMAI1 小时前
利用DataStream和TrafficPeak实现大数据可观察性
人工智能·云原生·云计算
Ai墨芯1112 小时前
深度学习水论文:特征提取
人工智能·深度学习
无名工程师2 小时前
神经网络知识讨论
人工智能·神经网络
nbsaas-boot2 小时前
AI时代,我们更需要自己的开发方式与平台
人工智能
SHIPKING3932 小时前
【机器学习&深度学习】LLamaFactory微调效果与vllm部署效果不一致如何解决
人工智能·深度学习·机器学习
jonyleek3 小时前
如何搭建一套安全的,企业级本地AI专属知识库系统?从安装系统到构建知识体系,全流程!
人工智能·安全
MQ_SOFTWARE4 小时前
AI驱动的金融推理:Fin-R1模型如何重塑行业决策逻辑
人工智能·金融