目录
题目描述
已知 n n n 个整数 x 1 , x 2 , ⋯ , x n x_1,x_2,\cdots,x_n x1,x2,⋯,xn,以及 1 1 1 个整数 k k k( k < n k<n k<n)。从 n n n 个整数中任选 k k k 个整数相加,可分别得到一系列的和。例如当 n = 4 n=4 n=4, k = 3 k=3 k=3, 4 4 4 个整数分别为 3 , 7 , 12 , 19 3,7,12,19 3,7,12,19 时,可得全部的组合与它们的和为:
3 + 7 + 12 = 22 3+7+12=22 3+7+12=22
3 + 7 + 19 = 29 3+7+19=29 3+7+19=29
7 + 12 + 19 = 38 7+12+19=38 7+12+19=38
3 + 12 + 19 = 34 3+12+19=34 3+12+19=34
现在,要求你计算出和为素数共有多少种。
例如上例,只有一种的和为素数: 3 + 7 + 19 = 29 3+7+19=29 3+7+19=29。
输入格式
第一行两个空格隔开的整数 n , k n,k n,k( 1 ≤ n ≤ 20 1 \le n \le 20 1≤n≤20, k < n k<n k<n)。
第二行 n n n 个整数,分别为 x 1 , x 2 , ⋯ , x n x_1,x_2,\cdots,x_n x1,x2,⋯,xn( 1 ≤ x i ≤ 5 × 1 0 6 1 \le x_i \le 5\times 10^6 1≤xi≤5×106)。
输出格式
输出一个整数,表示种类数。
样例 #1
样例输入 #1
4 3
3 7 12 19
样例输出 #1
1
提示
【题目来源】
NOIP 2002 普及组第二题
代码
cpp
#include <bits/stdc++.h>
using namespace std;
int n,k,a[25],w[25],cnt;
bool isPrime(int n)
{
if(n<=1)
return false;
if(n==2)
return true;
for(int i=2; i*i<=n; i++)
if(n%i==0)
return false;
return true;
}
void dfs(int step)
{
if(step>n)
{
int sum=0,total=0;
for(int i=1; i<=n; i++)
if(a[i]==1)
{
sum+=w[i];
total++;
}
if(isPrime(sum) && total==k)
cnt++;
return;
}
a[step]=0;
dfs(step+1);
a[step]=1;
dfs(step+1);
}
int main()
{
cin>>n>>k;
for(int i=1; i<=n; i++)
cin>>w[i];
dfs(1);
cout<<cnt;
return 0;
}